Patents by Inventor Zachary William Nagel
Zachary William Nagel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240159201Abstract: A monolithic heat exchanger body for inputting heat to a closed-cycle engine includes heating walls and heat sink, such as heat transfer regions. The heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the heating walls respectively define corresponding heating fluid pathways fluidly communicating with the inlet plenum. At least a portion of the heat sink is disposed about at least a portion of the monolithic heat exchanger body. The heat sink includes working-fluid bodies including working-fluid pathways that have a heat transfer relationship with the heating fluid pathways. Respective ones of the heat transfer regions have a heat transfer relationship with a corresponding semiannular portion of the heating fluid pathways. Respective ones of the heat transfer regions include working-fluid pathways fluidly communicating between a heat input region and a heat extraction region.Type: ApplicationFiled: January 26, 2024Publication date: May 16, 2024Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
-
Patent number: 11885279Abstract: A monolithic heat exchanger body for inputting heat to a closed-cycle engine includes heating walls and heat sink, such as heat transfer regions. The heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the heating walls respectively define corresponding heating fluid pathways fluidly communicating with the inlet plenum. At least a portion of the heat sink is disposed about at least a portion of the monolithic heat exchanger body. The heat sink includes working-fluid bodies including working-fluid pathways that have a heat transfer relationship with the heating fluid pathways. Respective ones of the heat transfer regions have a heat transfer relationship with a corresponding semiannular portion of the heating fluid pathways. Respective ones of the heat transfer regions include working-fluid pathways fluidly communicating between a heat input region and a heat extraction region.Type: GrantFiled: May 27, 2022Date of Patent: January 30, 2024Assignee: Hyliion Holdings Corp.Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
-
Patent number: 11484892Abstract: A particle separator for removing particles from a gaseous stream, the particle separator having a separator body having a centerline axis and a peripheral wall defining a separation chamber, a fluid inlet in fluid communication with the separation chamber, a particle outlet in fluid communication with the separation chamber, a fluid outlet in fluid communication with the separation chamber, and a plurality of angled inlet apertures fluidly coupled between the fluid inlet and the separation chamber. A particulate separation system for removing particles from a gaseous stream, the particulate filtration system having an inlet, an outlet, and a plurality of particle separators located between and in fluid communication with, the inlet and the outlet, wherein each of the plurality of particle separators receives less than about 5 percent by volume of the flow of the gaseous stream entering the inlet.Type: GrantFiled: December 22, 2020Date of Patent: November 1, 2022Assignee: General Electric CompanyInventors: Peter Joseph Rock, Jr., Cassidy Charles Shibiya, Travis Gene Sands, Joshua Tyler Mook, Zachary William Nagel, Mary Kathryn Thompson
-
Publication number: 20220290630Abstract: A monolithic heat exchanger body for inputting heat to a closed-cycle engine includes heating walls and heat sink, such as heat transfer regions. The heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the heating walls respectively define corresponding heating fluid pathways fluidly communicating with the inlet plenum. At least a portion of the heat sink is disposed about at least a portion of the monolithic heat exchanger body. The heat sink includes working-fluid bodies including working-fluid pathways that have a heat transfer relationship with the heating fluid pathways. Respective ones of the heat transfer regions have a heat transfer relationship with a corresponding semiannular portion of the heating fluid pathways. Respective ones of the heat transfer regions include working-fluid pathways fluidly communicating between a heat input region and a heat extraction region.Type: ApplicationFiled: May 27, 2022Publication date: September 15, 2022Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
-
Patent number: 11346302Abstract: A monolithic heat exchanger body for inputting heat to a closed-cycle engine may include a plurality of heating walls and heat sink, such as a plurality of heat transfer regions. The plurality of heating walls may be configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the plurality of heating walls may respectively define a corresponding plurality of heating fluid pathways therebetween, for example, fluidly communicating with the inlet plenum. At least a portion of the heat sink may be disposed about at least a portion of the monolithic heat exchanger body. The heat sink may include a plurality of working-fluid bodies, for example, including a plurality of working-fluid pathways that have a heat transfer relationship with the plurality of heating fluid pathways.Type: GrantFiled: November 2, 2020Date of Patent: May 31, 2022Assignee: General Electric CompanyInventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
-
Patent number: 11181072Abstract: A monolithic combustor body may provide multi-stage combustion. A combustor body may include a combustion chamber body and a plurality of heating walls that include a heat sink. The combustion chamber body may be disposed annularly about a longitudinal axis and defining a combustion chamber. The plurality of heating walls may include heat sink. The plurality of heating walls may occupy a radially or concentrically outward position relative to the combustion chamber and may define a corresponding plurality of combustion-gas pathways fluidly communicating with at least a proximal portion of the combustion chamber.Type: GrantFiled: May 20, 2020Date of Patent: November 23, 2021Assignee: General Electric CompanyInventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel
-
Publication number: 20210197214Abstract: A particle separator for removing particles from a gaseous stream, the particle separator having a separator body having a centerline axis and a peripheral wall defining a separation chamber, a fluid inlet in fluid communication with the separation chamber, a particle outlet in fluid communication with the separation chamber, a fluid outlet in fluid communication with the separation chamber, and a plurality of angled inlet apertures fluidly coupled between the fluid inlet and the separation chamber. A particulate separation system for removing particles from a gaseous stream, the particulate filtration system having an inlet, an outlet, and a plurality of particle separators located between and in fluid communication with, the inlet and the outlet, wherein each of the plurality of particle separators receives less than about 5 percent by volume of the flow of the gaseous stream entering the inlet.Type: ApplicationFiled: December 22, 2020Publication date: July 1, 2021Inventors: Peter Joseph Rock, JR., Cassidy Charles Shibiya, Travis Gene Sands, Joshua Tyler Mook, Zachary William Nagel, Mary Katnryn Thompson
-
Patent number: 11022068Abstract: A monolithic heater body may include a combustor body, a hot-side heat exchanger body, and an eductor body. The combustor body may define a combustion chamber and a conditioning conduit circumferentially surrounding the combustion chamber. The conditioning conduit may fluidly communicate with the combustion chamber at a distal portion of the combustion chamber. The hot-side heat exchanger body may define a hot-side heat exchanger that includes a heating fluid pathway fluidly communicating with a proximal portion of the combustion chamber. The eductor body may define an eduction pathway fluidly communicating with a downstream portion of the heating fluid pathway and a proximal portion of the conditioning conduit.Type: GrantFiled: May 20, 2020Date of Patent: June 1, 2021Assignee: General Electric CompanyInventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel
-
Publication number: 20210062756Abstract: A monolithic heat exchanger body for inputting heat to a closed-cycle engine may include a plurality of heating walls and heat sink, such as a plurality of heat transfer regions. The plurality of heating walls may be configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the plurality of heating walls may respectively define a corresponding plurality of heating fluid pathways therebetween, for example, fluidly communicating with the inlet plenum. At least a portion of the heat sink may be disposed about at least a portion of the monolithic heat exchanger body. The heat sink may include a plurality of working-fluid bodies, for example, including a plurality of working-fluid pathways that have a heat transfer relationship with the plurality of heating fluid pathways.Type: ApplicationFiled: November 2, 2020Publication date: March 4, 2021Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
-
Publication number: 20200370842Abstract: A monolithic heat exchanger body includes a plurality of heating walls and a plurality of combustion fins. The plurality of heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis. Adjacent portions of the plurality of heating walls respectively define a corresponding plurality of heating fluid pathways therebetween. The plurality of combustion fins are circumferentially spaced about a perimeter of an inlet plenum. The inlet plenum includes or fluidly communicates with a combustion chamber. The plurality of heating fluid pathways fluidly communicate with the inlet plenum. The plurality of combustion fins occupy a radially or concentrically inward portion of the monolithic heat exchanger body. The plurality of heating fluid pathways have a heat transfer relationship with a heat sink disposed about a radially or concentrically outward portion of the monolithic heat exchanger body.Type: ApplicationFiled: May 20, 2020Publication date: November 26, 2020Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
-
Publication number: 20200370509Abstract: A monolithic heater body may include a combustor body, a hot-side heat exchanger body, and an eductor body. The combustor body may define a combustion chamber and a conditioning conduit circumferentially surrounding the combustion chamber. The conditioning conduit may fluidly communicate with the combustion chamber at a distal portion of the combustion chamber. The hot-side heat exchanger body may define a hot-side heat exchanger that includes a heating fluid pathway fluidly communicating with a proximal portion of the combustion chamber. The eductor body may define an eduction pathway fluidly communicating with a downstream portion of the heating fluid pathway and a proximal portion of the conditioning conduit.Type: ApplicationFiled: May 20, 2020Publication date: November 26, 2020Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel
-
Publication number: 20200370508Abstract: A monolithic combustor body may provide multi-stage combustion. A combustor body may include a combustion chamber body and a plurality of heating walls that include a heat sink. The combustion chamber body may be disposed annularly about a longitudinal axis and defining a combustion chamber. The plurality of heating walls may include heat sink. The plurality of heating walls may occupy a radially or concentrically outward position relative to the combustion chamber and may define a corresponding plurality of combustion-gas pathways fluidly communicating with at least a proximal portion of the combustion chamber.Type: ApplicationFiled: May 20, 2020Publication date: November 26, 2020Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel
-
Publication number: 20200355132Abstract: A system for reducing emissions from an internal combustion engine includes a combustion chamber having an inlet and an outlet, a fuel delivery device for delivering fuel to the combustion chamber, and a control system for controlling a fuel to oxidizer ratio in the combustion chamber. A method of reducing emissions from an internal combustion engine includes the steps of: establishing a flow of oxygen-containing gas through a combustion chamber having an inlet and an outlet; introducing flow of fuel into the combustion chamber; igniting the fuel in the combustion chamber; operating an internal combustion engine to develop a stream of exhaust gas; introducing a flow of the exhaust gas into the combustion chamber; and controlling the flow of exhaust gas and the flow of fuel to minimize oxygen levels in exhaust gases downstream of the outlet.Type: ApplicationFiled: May 7, 2020Publication date: November 12, 2020Inventors: Joshua Tyler Mook, Zachary William Nagel, Mohammed El Hacin Sennoun, Kevin Michael Vandevoorde, Mary Kathryn Thompson
-
Patent number: 10830174Abstract: A monolithic heat exchanger body includes a plurality of heating walls and a plurality of combustion fins. The plurality of heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis. Adjacent portions of the plurality of heating walls respectively define a corresponding plurality of heating fluid pathways therebetween. The plurality of combustion fins are circumferentially spaced about a perimeter of an inlet plenum. The inlet plenum includes or fluidly communicates with a combustion chamber. The plurality of heating fluid pathways fluidly communicate with the inlet plenum. The plurality of combustion fins occupy a radially or concentrically inward portion of the monolithic heat exchanger body. The plurality of heating fluid pathways have a heat transfer relationship with a heat sink disposed about a radially or concentrically outward portion of the monolithic heat exchanger body.Type: GrantFiled: May 20, 2020Date of Patent: November 10, 2020Assignee: General Electric CompanyInventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
-
Patent number: 9103345Abstract: Provided is a supersonic compressor having a supersonic compressor rotor including a clockable rotor disk allowing restriction or opening of portions of a fluid flow channel of the rotor in order to enhance performance of the rotor during different operational stages, for example rotor start-up or steady state. The supersonic compressor has a first rotor disk, a second rotor disk and a third rotor disk which share a common axis of rotation. The first and second rotor disks are rotatably coupled, and the third rotor disk is disposed between them. The third rotor disk is independently rotatable relative to the first and second disks, and has a raised surface structure for restricting or opening a portion of the flow channel defined by the three rotor disks and at least two vanes. The flow channel contains a supersonic compression ramp and encompasses the raised surface structure.Type: GrantFiled: December 16, 2009Date of Patent: August 11, 2015Assignee: General Electric CompanyInventors: Zachary William Nagel, Douglas Carl Hofer
-
Patent number: 9097258Abstract: The present invention provides novel supersonic compressors comprising novel supersonic compressor rotors. The supersonic compressor rotors are designed to operate at very high rotational speed wherein the velocity of the gas entering the supersonic compressor rotor is greater than the local speed of sound in the gas, hence the descriptor “supersonic”. The new supersonic compressors comprise at least one supersonic compressor rotor defining an inner cylindrical cavity and an outer rotor rim and at least one radial flow channel allowing fluid communication between the inner cylindrical cavity and the outer rotor rim, said radial flow channel comprising a supersonic compression ramp. The novel supersonic compressor rotors are expected to enhance the performance of supersonic compressors comprising them, and to provide for greater design versatility in systems comprising such novel supersonic compressors.Type: GrantFiled: June 25, 2009Date of Patent: August 4, 2015Assignee: General Electric CompanyInventors: Douglas Carl Hofer, Zachary William Nagel, David Graham Holmes
-
Patent number: 8668446Abstract: A supersonic compressor rotor. The supersonic compressor rotor includes a rotor disk that includes an upstream surface, a downstream surface, and a radially outer surface that extends generally axially between the upstream surface and the downstream surface. The radially outer surface includes an inlet surface, an outlet surface, and a transition surface that extends between the inlet surface and the outlet surface. A plurality of vanes are coupled to the radially outer surface. Adjacent vanes form a pair and are oriented such that a flow channel is defined between each pair of adjacent vanes. The flow channel extends between an inlet opening and an outlet opening. The inlet surface defines an inlet plane that extends between the inlet opening and the transition surface. The outlet surface defines an outlet plane that extends between the outlet opening and the transition surface that is not parallel to the inlet plane.Type: GrantFiled: August 31, 2010Date of Patent: March 11, 2014Assignee: General Electric CompanyInventors: Douglas Carl Hofer, Zachary William Nagel, David Graham Holmes
-
Patent number: 8657571Abstract: A supersonic compressor rotor that includes a rotor disk that includes a body that extends between a radially inner surface and a radially outer surface. A plurality of vanes are coupled to the body. The vanes extend outwardly from the rotor disk. Adjacent vanes form a pair and are oriented such that a flow channel is defined between each pair of adjacent vanes. The flow channel extends between an inlet opening and an outlet opening. At least one supersonic compression ramp is positioned within the flow channel. The supersonic compression ramp is configured to condition a fluid being channeled through the flow channel such that the fluid includes a first velocity at the inlet opening and a second velocity at the outlet opening. Each of the first velocity and the second velocity being supersonic with respect to said rotor disk surfaces.Type: GrantFiled: December 21, 2010Date of Patent: February 25, 2014Assignee: General Electric CompanyInventors: Douglas Carl Hofer, Zachary William Nagel, D{acute over (h)}ananjayarao Gottapu
-
Publication number: 20120156016Abstract: A supersonic compressor rotor that includes a rotor disk that includes a body that extends between a radially inner surface and a radially outer surface. A plurality of vanes are coupled to the body. The vanes extend outwardly from the rotor disk. Adjacent vanes form a pair and are oriented such that a flow channel is defined between each pair of adjacent vanes. The flow channel extends between an inlet opening and an outlet opening. At least one supersonic compression ramp is positioned within the flow channel. The supersonic compression ramp is configured to condition a fluid being channeled through the flow channel such that the fluid includes a first velocity at the inlet opening and a second velocity at the outlet opening. Each of the first velocity and the second velocity being supersonic with respect to said rotor disk surfaces.Type: ApplicationFiled: December 21, 2010Publication date: June 21, 2012Inventors: DOUGLAS CARL HOFER, Zachary William Nagel, Dhananjayarao Gottapu
-
Publication number: 20120156015Abstract: A supersonic compressor includes a fluid inlet and a fluid outlet, a fluid conduit extending therebetween, and a supersonic compressor rotor disposed within the fluid conduit. The rotor includes at least one rotor disk that includes a substantially cylindrical body extending between a radially inner and outer surface and a plurality of vanes coupled to the body that extend radially outward from the rotor disk and adjacent vanes form a pair of vanes. The rotor disk further includes a shroud extending about at least a portion of the rotor disk. The shroud is coupled to at least a portion of each of the plurality of vanes. The radially outer surface, the pair of adjacent vanes, and the shroud are oriented such that a fluid flow channel is defined therebetween. The rotor disk also includes a plurality of adjacent supersonic compression ramps positioned within the fluid flow channel.Type: ApplicationFiled: December 17, 2010Publication date: June 21, 2012Inventors: Ravindra Gopaldas Devi, Douglas Carl Hofer, Zachary William Nagel, David Graham Holmes