Patents by Inventor Zafar Ali
Zafar Ali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240129223Abstract: Systems, methods, and computer-readable media are disclosed for validating multiple paths used for routing network traffic in a network. In one aspect, a network controller can identify one or more intermediate nodes on each of multiple paths in a network, wherein the multiple paths begin at a first network node and end at a last network node. The network controller can further generate a data packet with a label at the first network node, forward the test data packet from the first network node, along each of the one or more intermediate nodes, to the last network node, and perform a data plane validation process for validating packet forwarding from the first network node to the last network node based on the label(s) by determining if a number of the multiple paths equals to a number of packets received at the last network node.Type: ApplicationFiled: December 20, 2023Publication date: April 18, 2024Inventors: Amila Pradeep Kumara Tharaperiya Gamage, Rakesh Gandhi, Zafar Ali
-
Publication number: 20240113962Abstract: In one embodiment, a service chain data packet is instrumented as it is communicated among network nodes in a network providing service-level and/or networking operations visibility. The service chain data packet includes a particular header identifying a service group defining one or more service functions, and is a data packet and not a probe packet. A network node adds networking and/or service-layer operations data to the particular service chain data packet, such as, but not limited to, in the particular header. Such networking operations data includes a performance metric or attribute related to the transport of the particular service chain packet in the network. Such service-layer operations data includes a performance metric or attribute related to the service-level processing of the particular service chain data packet in the network.Type: ApplicationFiled: December 5, 2023Publication date: April 4, 2024Inventors: Clarence FILSFILS, Zafar ALI, Syed Kamran RAZA, Ahmed Refaat BASHANDY, Nagendra Kumar NAINAR, Carlos M. PIGNATARO, Jaganbabu RAJAMANICKAM, Rakesh GANDHI, Bhupendra YADAV, Faisal IQBAL
-
Patent number: 11924090Abstract: In one embodiment, a service chain data packet is instrumented as it is communicated among network nodes in a network providing service-level and/or networking operations visibility. The service chain data packet includes a particular header identifying a service group defining one or more service functions, and is a data packet and not a probe packet. A network node adds networking and/or service-layer operations data to the particular service chain data packet, such as, but not limited to, in the particular header. Such networking operations data includes a performance metric or attribute related to the transport of the particular service chain packet in the network. Such service-layer operations data includes a performance metric or attribute related to the service-level processing of the particular service chain data packet in the network.Type: GrantFiled: December 28, 2022Date of Patent: March 5, 2024Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Zafar Ali, Syed Kamran Raza, Ahmed Bashandy, Nagendra Kumar Nainar, Carlos M. Pignataro, Jaganbabu Rajamanickam, Rakesh Gandhi, Bhupendra Yadav, Faisal Iqbal
-
Patent number: 11909641Abstract: The present disclosure includes methods, systems, and non-transitory computer-readable media for validating data in a data structure used for forwarding packets by a network device comprising sending a data packet probe identifying a destination and including a segment ID, wherein the segment ID maps to a first interpretation by a receiving router to perform an action on the data packet probe to rewrite a portion of a destination address in a header of the data packet probe, and to redirect the data packet probe to the network device that initiated the data packet probe.Type: GrantFiled: December 29, 2022Date of Patent: February 20, 2024Assignee: Cisco Technology, Inc.Inventors: Nagendra Kumar Nainar, Carlos M. Pignataro, Zafar Ali, Syed Kamran Raza
-
Patent number: 11882016Abstract: Systems, methods, and computer-readable media are disclosed for validating multiple paths used for routing network traffic in a network. In one aspect, a network controller can identify one or more intermediate nodes on each of multiple paths in a network, wherein the multiple paths begin at a first network node and end at a last network node. The network controller can further generate a data packet with a label at the first network node, forward the test data packet from the first network node, along each of the one or more intermediate nodes, to the last network node, and perform a data plane validation process for validating packet forwarding from the first network node to the last network node based on the label(s) by determining if a number of the multiple paths equals to a number of packets received at the last network node.Type: GrantFiled: November 30, 2021Date of Patent: January 23, 2024Assignee: Cisco Technology, Inc.Inventors: Amila Pradeep Kumara Tharaperiya Gamage, Rakesh Gandhi, Zafar Ali
-
Patent number: 11863433Abstract: The present technology provides a system and method for implementing targeted collection of in-situ Operation, Administration and Maintenance data from select nodes in a Segment Routing Domain. The selection is programmable and is implemented by setting an iOAM bit in the function arguments field of a Segment Identifier. In this way only the nodes associated with local Segment Identifiers (Function field of a Segment Identifier) with an iOAM argument bit are directed to generate iOAM data. The iOAM data generated by target nodes may be stored in TLV field of the segment routing header. The Segment Routing packet is then decapsulated at a Segment Routing egress node and the Header information with the collected iOAM data is sent to a controller entity for further processing, analysis and/or monitoring.Type: GrantFiled: January 12, 2023Date of Patent: January 2, 2024Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Zafar Ali, Frank Brockners
-
Patent number: 11863435Abstract: In one embodiment, a service chain data packet is instrumented as it is communicated among network nodes in a network providing service-level and/or networking operations visibility. The service chain data packet includes a particular header identifying a service group defining one or more service functions, and is a data packet and not a probe packet. A network node adds networking and/or service-layer operations data to the particular service chain data packet, such as, but not limited to, in the particular header. Such networking operations data includes a performance metric or attribute related to the transport of the particular service chain packet in the network. Such service-layer operations data includes a performance metric or attribute related to the service-level processing of the particular service chain data packet in the network.Type: GrantFiled: July 8, 2022Date of Patent: January 2, 2024Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Zafar Ali, Syed Kamran Raza, Ahmed Refaat Bashandy, Nagendra Kumar Nainar, Carlos M. Pignataro, Jaganbabu Rajamanickam, Rakesh Gandhi, Bhupendra Yadav, Faisal Iqbal
-
Patent number: 11855884Abstract: Techniques and mechanisms for compressing the size of SIDs to be smaller than a complete IPv6 address (or “micro SIDs”), and scaling micro SIDs across a multi-domain environment using micro SID-domain-blocks. Segment routing over IPv6 (SRv6) uses 128-bit IPv6 addresses as SIDs for segment routing. According to this disclosure, multiple SRv6 SIDs may be expressed in a compact format such that a 128-bit IPv6 address, such as the destination address field of the IPv6 header, may store multiple micro SIDs. Further, SID-domain-blocks may be assigned to each domain in a multi-domain network such that micro SIDs may be expressed in the context of a given domain, rather than being shared in the global multi-domain network. In this way, lists of domain-specific SIDs may be fully expressed in the IPv6 destination address of the packet to scale micro SID into large, multi-domain networks.Type: GrantFiled: May 22, 2023Date of Patent: December 26, 2023Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Francois Clad, Zafar Ali, Peter Psenak
-
Patent number: 11838200Abstract: In one embodiment, a network comprises a first forwarding domain using a first data plane forwarding protocol and a second forwarding domain using a second data plane forwarding protocol different than the first data forwarding plane forwarding protocol. The first forwarding domain includes a first path node and a particular border node. The second forwarding domain includes a second path node and the particular border node. The particular border node performs Segment Routing or other protocol interworking between the different data plane forwarding domains, such as for transporting packets through a different forwarding domain or translating a packet to use a different data forwarding protocol. These forwarding domains typically include Segment Routing (SR) and SR-Multiprotocol Label Switching (SR-MPLS). Paths through the network are determined by a Path Computation Engine and/or based on route advertisements such associated with Binding Segment Identifiers (BSIDs) (e.g.Type: GrantFiled: September 23, 2021Date of Patent: December 5, 2023Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Swadesh Agrawal, Zafar Ali, Pablo Camarillo Garvia, Francois Clad
-
Publication number: 20230370370Abstract: Techniques for initiator-based data-plane validation of segment routed, multiprotocol label switched (MPLS) networks are described herein. In examples, an initiating node may determine to validate data-plane connectivity associated with a network path of the MPLS network. The initiating node may store validation data in a local memory of the initiating node. In examples, the initiating node may send a probe message that includes a request for identification data associated with a terminating node. The terminating node may send a probe reply message that includes the identification data, as well as, in some examples, a code that instructs the initiating node to perform validation. In examples, the initiating node may use the validation data stored in memory to compare to the identification data received from the terminating node to validate data-plane connectivity. In some examples, the initiating node may indicate a positive or negative response after performing the validation.Type: ApplicationFiled: July 19, 2023Publication date: November 16, 2023Inventors: Nagendra Kumar Nainar, Carlos M. Pignataro, Zafar Ali
-
Patent number: 11818038Abstract: Techniques for initiator-based data-plane validation of segment routed, multiprotocol label switched (MPLS) networks are described herein. In examples, an initiating node may determine to validate data-plane connectivity associated with a network path of the MPLS network. The initiating node may store validation data in a local memory of the initiating node. In examples, the initiating node may send a probe message that includes a request for identification data associated with a terminating node. The terminating node may send a probe reply message that includes the identification data, as well as, in some examples, a code that instructs the initiating node to perform validation. In examples, the initiating node may use the validation data stored in memory to compare to the identification data received from the terminating node to validate data-plane connectivity. In some examples, the initiating node may indicate a positive or negative response after performing the validation.Type: GrantFiled: February 3, 2022Date of Patent: November 14, 2023Assignee: Cisco Technology, Inc.Inventors: Nagendra Kumar Nainar, Carlos M. Pignataro, Zafar Ali
-
Publication number: 20230300067Abstract: Techniques and mechanisms for compressing the size of SIDs to be smaller than a complete IPv6 address (or “micro SIDs”), and scaling micro SIDs across a multi-domain environment using micro SID-domain-blocks. Segment routing over IPv6 (SRv6) uses 128-bit IPv6 addresses as SIDs for segment routing. According to this disclosure, multiple SRv6 SIDs may be expressed in a compact format such that a 128-bit IPv6 address, such as the destination address field of the IPv6 header, may store multiple micro SIDs. Further, SID-domain-blocks may be assigned to each domain in a multi-domain network such that micro SIDs may be expressed in the context of a given domain, rather than being shared in the global multi-domain network. In this way, lists of domain-specific SIDs may be fully expressed in the IPv6 destination address of the packet to scale micro SID into large, multi-domain networks.Type: ApplicationFiled: May 22, 2023Publication date: September 21, 2023Inventors: Clarence Filsfils, Francois Clad, Zafar Ali, Peter Psenak
-
Publication number: 20230283568Abstract: The present technology is directed to a system and method for implementing network resource partitioning and Quality of Service (QoS) separation through network slicing. Embodiments of the present invention describe scalable network slicing method based on defining Segment Routing Flexible Algorithm to represent a network slice and assigning a distinct QoS policy queue to each of the Flexible Algorithms configured on a network node. Therefore, scalable network slice based queuing is implemented wherein a single packet processing queue is assigned to each Flex-Algorithm based network slice. QoS policy queue may be implemented in a hierarchical fashion by differentiation between flow packets in a single QoS policy queue based on value of experimental bits in the header.Type: ApplicationFiled: March 6, 2023Publication date: September 7, 2023Inventors: Clarence Filsfils, Zafar Ali, Pablo Camarillo Garvia, Francois Clad
-
Patent number: 11722404Abstract: Techniques and mechanisms for compressing the size of SIDs to be smaller than a complete IPv6 address (or “micro SIDs”), and scaling micro SIDs across a multi-domain environment using micro SID-domain-blocks. Segment routing over IPv6 (SRv6) uses 128-bit IPv6 addresses as SIDs for segment routing. According to this disclosure, multiple SRv6 SIDs may be expressed in a compact format such that a 128-bit IPv6 address, such as the destination address field of the IPv6 header, may store multiple micro SIDs. Further, SID-domain-blocks may be assigned to each domain in a multi-domain network such that micro SIDs may be expressed in the context of a given domain, rather than being shared in the global multi-domain network. In this way, lists of domain-specific SIDs may be fully expressed in the IPv6 destination address of the packet to scale micro SID into large, multi-domain networks.Type: GrantFiled: August 17, 2021Date of Patent: August 8, 2023Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Francois Clad, Zafar Ali, Peter Psenak
-
Publication number: 20230171178Abstract: Systems, methods, and computer-readable media are disclosed for validating multiple paths used for routing network traffic in a network. In one aspect, a network controller can identify one or more intermediate nodes on each of multiple paths in a network, wherein the multiple paths begin at a first network node and end at a last network node. The network controller can further generate a data packet with a label at the first network node, forward the test data packet from the first network node, along each of the one or more intermediate nodes, to the last network node, and perform a data plane validation process for validating packet forwarding from the first network node to the last network node based on the label(s) by determining if a number of the multiple paths equals to a number of packets received at the last network node.Type: ApplicationFiled: November 30, 2021Publication date: June 1, 2023Inventors: Amila Pradeep Kumara Tharaperiya Gamage, Rakesh Gandhi, Zafar Ali
-
Publication number: 20230155926Abstract: The present technology provides a system and method for implementing targeted collection of in-situ Operation, Administration and Maintenance data from select nodes in a Segment Routing Domain. The selection is programmable and is implemented by setting an iOAM bit in the function arguments field of a Segment Identifier. In this way only the nodes associated with local Segment Identifiers (Function field of a Segment Identifier) with an iOAM argument bit are directed to generate iOAM data. The iOAM data generated by target nodes may be stored in TLV field of the segment routing header. The Segment Routing packet is then decapsulated at a Segment Routing egress node and the Header information with the collected iOAM data is sent to a controller entity for further processing, analysis and/or monitoring.Type: ApplicationFiled: January 12, 2023Publication date: May 18, 2023Inventors: Clarence Filsfils, Zafar Ali, Frank Brockners
-
Publication number: 20230138389Abstract: The present disclosure includes methods, systems, and non-transitory computer-readable media for validating data in a data structure used for forwarding packets by a network device comprising sending a data packet probe identifying a destination and including a segment ID, wherein the segment ID maps to a first interpretation by a receiving router to perform an action on the data packet probe to rewrite a portion of a destination address in a header of the data packet probe, and to redirect the data packet probe to the network device that initiated the data packet probe.Type: ApplicationFiled: December 29, 2022Publication date: May 4, 2023Inventors: Nagendra Kumar Nainar, Carlos M. Pignataro, Zafar Ali, Syed Kamran Raza
-
Publication number: 20230135261Abstract: In one embodiment, a service chain data packet is instrumented as it is communicated among network nodes in a network providing service-level and/or networking operations visibility. The service chain data packet includes a particular header identifying a service group defining one or more service functions, and is a data packet and not a probe packet. A network node adds networking and/or service-layer operations data to the particular service chain data packet, such as, but not limited to, in the particular header. Such networking operations data includes a performance metric or attribute related to the transport of the particular service chain packet in the network. Such service-layer operations data includes a performance metric or attribute related to the service-level processing of the particular service chain data packet in the network.Type: ApplicationFiled: December 28, 2022Publication date: May 4, 2023Inventors: Clarence Filsfils, Zafar Ali, Syed Kamran Raza, Ahmed Bashandy, Nagendra Kumar Nainar, Carlos M. Pignataro, Jaganbabu Rajamanickam, Rakesh Gandhi, Bhupendra Yadav, Faisal Iqbal
-
Patent number: 11627094Abstract: The present technology is directed to a system and method for implementing network resource partitioning and Quality of Service (QoS) separation through network slicing. Embodiments of the present invention describe scalable network slicing method based on defining Segment Routing Flexible Algorithm to represent a network slice and assigning a distinct QoS policy queue to each of the Flexible Algorithms configured on a network node. Therefore, scalable network slice based queuing is implemented wherein a single packet processing queue is assigned to each Flex-Algorithm based network slice. QoS policy queue may be implemented in a hierarchical fashion by differentiation between flow packets in a single QoS policy queue based on value of experimental bits in the header.Type: GrantFiled: March 20, 2020Date of Patent: April 11, 2023Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Zafar Ali, Pablo Camarillo Garvia, Francois Clad
-
Patent number: 11611505Abstract: Techniques and mechanisms for compressing the size of SIDs to be smaller than a complete IPv6 address (or “micro SIDs”), and scaling micro SIDs across a multi-domain environment using micro SID-domain-blocks. Segment routing over IPv6 (SRv6) uses 128-bit IPv6 addresses as SIDs for segment routing. According to this disclosure, multiple SRv6 SIDs may be expressed in a compact format such that a 128-bit IPv6 address, such as the destination address field of the IPv6 header, may store multiple micro SIDs. Further, SID-domain-blocks may be assigned to each domain in a multi-domain network such that micro SIDs may be expressed in the context of a given domain, rather than being shared in the global multi-domain network. In this way, lists of domain-specific SIDs may be fully expressed in the IPv6 destination address of the packet to scale micro SID into large, multi-domain networks.Type: GrantFiled: August 17, 2021Date of Patent: March 21, 2023Assignee: Cisco Technology, Inc.Inventors: Clarence Filsfils, Francois Clad, Zafar Ali, Peter Psenak