Patents by Inventor Zahra Nazarpoor

Zahra Nazarpoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140302983
    Abstract: Disclosed here are material formulations of use in the conversion of exhaust gases, where the formulations may include Niobium (Nb), Zirconium (Zr) and combinations thereof.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: CDTi
    Inventor: Zahra Nazarpoor
  • Patent number: 8853121
    Abstract: The effect of aging temperature on oxygen storage materials (OSM) substantially free from platinum group (PGM) and rare earth (RE) metals is disclosed. Samples of ZPGM-ZRE metals OSM, hydrothermally aged at a plurality of high temperatures are found to have significantly high oxygen storage capacity (OSC) and phase stability than conventional PGM catalysts with Ce-based OSM. ZPGM-ZRE metals OSM includes a formulation of Cu—Mn stoichiometric spinel structure deposited on Nb—Zr oxide support and may be converted into powder to be used as OSM application or coated onto catalyst substrate. ZPGM-ZRE metals OSM, after aging condition, presents enhanced level of thermal stability and OSC property which shows improved catalytic activity than conventional PGM catalysts including Ce-based OSM. ZPGM-ZRE metals OSM may be suitable for a vast number of applications, and more particularly in underfloor catalyst systems.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 7, 2014
    Assignee: Clean Diesel Technology Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 8845987
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a Cu—Mn spinel structure and an overcoat that includes PGM supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under stoichiometric operating conditions and especially under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also enhances the reduction of carbon monoxide and hydrocarbon within catalytic converters. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalyst activity compared to commercial PGM catalyst system, showing that there is a synergistic effect among PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 30, 2014
    Assignee: Clean Diesel Technologies Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140271388
    Abstract: Optimized Cu—Mn spinel compositions, with optimal spinel phase formation and phase stability properties, for a plurality of ZPGM catalysts in underfloor and closed-loop coupled catalyst applications are disclosed. Plurality of Cu—Mn spinel compositions are prepared with variations of molar ratios. Effect of calcination temperature is analyzed to determine spinel phase formation and phase stability, as well as the effect of calcination temperature on lattice parameter of spinel, as correlated to spinel phase formation and phase stability of optimal Cu—Mn spinel compositions disclosed. Disclosed Cu—Mn spinels with enhanced spinel phase formation and phase stability may be suitable for ZPGM catalyst systems used in a vast number of TWC applications.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140271393
    Abstract: Disclosed here are methods of preparing zero platinum group metal catalysts systems with different support oxide material. A ZPGM catalyst system may include a substrate and a washcoat and an impregnation layer, wherein said impregnation layer may include the ZPGM pervoskite catalyst and the washcoat layer may include the support oxides material. Suitable support oxides material may include ZrO2, ZrO2 doped with lanthanide group metals, Nb2O5, Nb2O5—ZrO2, Al2O3 and Al2O3 doped with lanthanide group metals, TiO2 and doped TiO2 or mixtures thereof.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271390
    Abstract: Described are ZPGM catalyst systems which are free of any platinum group metals for reducing emissions of carbon monoxide, nitrogen oxides, and hydrocarbons in exhaust streams. ZPGM catalyst systems may include a substrate, a washcoat, and an overcoat. Both manganese and copper may be provided as catalysts, with copper in the overcoat and manganese preferably in the washcoat. The manganese can also be provided in the overcoat, but when in the overcoat should be stabilized for greatest effectiveness. A carrier material oxide may be included in both washcoat and overcoat. It has been discovered that the ZPGM catalyst systems are effective even without OSM in washcoat and the ZPGM catalysts within washcoat and overcoat may be best prepared by co-milling an aqueous slurry that includes manganese with alumina for the washcoat and copper and cerium salts with alumina and an OSM, for overcoat prior to overcoating and heat treating.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274663
    Abstract: The effect of firing (calcination) cycle on metallic substrates in ZPGM catalyst systems is disclosed. ZPGM catalyst samples with washcoat and overcoat are separately fired in a normal, slow and fast firing cycles to determine the optimal firing cycling that may provide an enhanced catalyst performance, as well as the minimal loss of washcoat adhesion from the samples.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Applicant: CDTi
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274677
    Abstract: It is an object of the present disclosure, to provide an oxygen storage material which may include optimum composition and structure of Cu—Mn spinel as OSM, with a suitable doped zirconia, including Niobium-Zirconia support oxide for OSM applications, which may include a chemical composition substantially free from rare metals. The OSC properties of Cu—Mn spinel with a suitable doped zirconia, including Niobium-Zirconia support oxide as OSM may be determined by comparing variations of Cu—Mn composition for determination of the optimum structure of spinel to achieve optimal OSC properties and thermal stability, which may be particularly useful for treating exhaust gases produced by internal combustion engines, where lean/rich fluctuations in operating conditions may produce high variation in exhaust contaminants that may be removed, achieving optimal OSC property of spinel at different temperatures, as well as thermal stability behavior of OSM.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274674
    Abstract: The influence of a plurality of support oxides on coating process for ZPGM catalysts is disclosed. ZPGM catalyst samples with washcoat on suitable ceramic substrate and overcoat including a plurality of support oxides are prepared including an impregnation layer of Cu—Mn spinel or overcoat may be prepared from powder of Cu—Mn spinel with support oxide. Testing of fresh and aged ZPGM catalyst samples is developed under isothermal steady state sweep test condition. Catalyst testing allows to determine effect of a plurality of support oxides on coating processes, TWC performance, and stability of ZPGM catalysts for a plurality of TWC applications. Stability of ZPGM-TWC systems may be improved by promotion of the activity of ZPGM materials incorporating support oxides. Improvements that may be provided by the combination of support oxides with ZPGM materials in the catalyst may lead to a most effective utilization of ZPGM materials in TWC converters.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 18, 2014
    Applicant: CDTi
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140274662
    Abstract: The present disclosure refers to variation of compositions for catalytic converters free of platinum group metals, which may be employed to manufacture ZPGM oxidation catalyst systems, to remove main pollutants from exhaust of diesel engines, by oxidizing toxic gases. Suitable support oxides material may include ZrO2, ZrO2 doped with lanthanide group metals, Nb2O5, Nb2O5—ZrO2, Al2O3 and Al2O3 doped with lanthanide group metals, TiO2 and doped TiO2 may be used. Materials suitable for use as ZPGM catalysts include Lanthanum (La), Yttrium (Y), Silver (Ag), Manganese (Mn) and combinations thereof. The disclosed ZPGM DOC systems may include perovskite structures with the characteristic formulation ABO3 or related structures. A plurality of methods may be employed for production of ZPGM diesel oxidation catalyst systems substantially free of PGM, which may include a substrate, a washcoat, and an impregnation layer.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271425
    Abstract: Oxidation ZPGM catalyst systems and three way ZPGM catalyst systems are disclosed. ZPGM catalyst systems may oxidize toxic gases, such as carbon monoxide and hydrocarbons, optionally some ZPGM catalyst systems may as well reduce nitrogen oxides that may be included in exhaust gases. ZPGM catalyst systems may include: a substrate, a washcoat, and an overcoat. The washcoat may include at least one ZPGM catalyst and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271391
    Abstract: Compositions and methods for the preparation of ZPGM TWC systems are disclosed. ZPGM TWC systems may be employed within catalytic converters to oxidize toxic gases, such as carbon monoxide and other hydrocarbons, as well as to reduce nitrogen oxides. ZPGM TWC systems are completely free of PGM catalyst and may include: a substrate, a washcoat, and an overcoat. Washcoat may include manganese as ZPGM catalyst, and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM TWC systems. ZPGM TWC systems may include high surface area, low conversion temperature catalysts that may exhibit high efficiency in the conversion of exhaust gases.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274678
    Abstract: Variations of coating processes of ZPGM catalyst materials for TWC applications are disclosed. The disclosed coating processes for ZPGM materials are enabled in the preparation of ZPGM catalyst samples according to a plurality of catalyst configurations, which may include washcoat and an overcoat layer with or without an impregnation layer, including Cu—Mn spinel and doped Zirconia support oxide, prepared according to variations of disclosed coating processes. Activity measurements under isothermal steady state sweep test condition are considered under lean condition and rich condition close to stoichiometric condition to analyze the influence of disclosed coating processes on TWC performance of ZPGM catalysts. Different coating processes may substantially increase TWC activity, providing improved levels of NO, CO, and HC conversions and cost effective manufacturing solutions.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271392
    Abstract: Disclosed here are material formulations of use in the conversion of exhaust gases, where the formulations may include Copper (Cu), Cerium (Ce), Tin (Sn), Niobium (Nb), Zirconium (Zr), Calcium (Ca) and combinations thereof.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271384
    Abstract: A Cu—Mn—Fe spinel on a plurality of support oxides is disclosed as ZPGM catalyst. The active phase for ZPGM samples may be Cu—Mn—Fe spinel on ZrO2 or Niobium-Zirconia support oxide. TWC activity may be increased and the effect of support oxide on performance of Cu—Mn—Fe spinel optimized to provide enhanced levels of NO, CO, and HC conversion even when compared to materials used for binary systems of Cu—Mn spinel. Cu—Mn—Fe spinel on support oxide provides optimal and stable spinel phase at a range of temperatures below 900° C. Bulk powder material including the disclosed ternary system may provide active catalyst for TWC applications having a chemical composition substantially free from PGM for cost effective manufacturing.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140271387
    Abstract: It is an object of the present disclosure, to provide an optimized catalyst composition with variations of Cu and Mn molar ratio, which may include a formulation CuxMn3-xO4 spinel, with a plurality of molar ratio variations for selecting the optimal Cu—Mn molar ratio for TWC application. The formulation may include a support oxide, such as Nb2O5—ZrO2. Employing this optimized Cu and Mn ratio in spinel as overcoat may achieve optimal NO conversion, high catalyst activity, and enhanced thermal stability, having a chemical composition substantially free from PGM and rare earth metals. According to principles of the present disclosure, the disclosed Cu—Mn spinel on Nb—Zr support oxide for TWC applications may require a washcoat of alumina, and overcoat of Cu—Mn spinel on Nb—Zr support oxide.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTi
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274675
    Abstract: Compositions and methods for the preparation of ZPGM oxidation catalyst systems are disclosed. ZPGM catalyst systems may be employed within catalytic converters under lean hydrocarbon, air to fuel ratio condition to oxidize toxic gases, such as carbon monoxide and other hydrocarbons that may be included in exhaust gas. ZPGM oxidation catalyst systems are completely free of PGM catalyst and may include: a substrate, a washcoat, and an overcoat. Washcoat may include silver as ZPGM catalyst, and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Overcoat of the disclosed ZPGM catalyst system may include copper and cerium as ZPGM catalysts. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor