Patents by Inventor Zailing ZHU

Zailing ZHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230272442
    Abstract: The present invention provides a 5-methylfolate producing microorganism which a) has been modified to have a decreased expression and/or activity of a polypeptide having both dihydrofolate synthase activity and folylpolyglutamate synthetase activity compared to an otherwise identical microorganism (reference microorganism); b) has been (further) modified to express a heterologous polypeptide having only dihydrofolate synthase activity; c) has been (further) modified to have an increased expression level of at least one enzyme (such as at least two, at least three, at least four, at least five, at least six, at least seven or at least eight) enzymes involved in the biosynthesis of a 5-methylfolate compared to an otherwise identical microorganism (reference microorganism); and/or d) has been (further) modified to have a decreased expression and/or activity of a polypeptide having 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase activity compared to an otherwise identical microorganism (ref
    Type: Application
    Filed: June 30, 2021
    Publication date: August 31, 2023
    Inventors: Mingan Shi, Xin Xiong, Jia Sun, Jing Zuo, Yunchong Xia, Zailing Zhu, Zhigang Cai, Guoying Zhang, Marko Blazlc, Tina Kogej, Gregor Kosec, Mirjan Svageij, Jaka Horvat, Stefan Fujs
  • Patent number: 10872682
    Abstract: A computer assisted method of designing a designed alloy composition comprising a plurality of elements, the method comprising the steps of: populating a multi-dimensional alloy space with a plurality of candidate alloy compositions, the plurality of candidate alloy compositions including for each of the plurality of elements at least three candidate alloy compositions with different amounts of the respective element to each other; performing at least one test on each individual one of the plurality of candidate alloy compositions until each of the individual ones of the plurality of candidate alloy compositions fails a test or has passed all tests; outputting the designed alloy composition based on one or more of the individual ones of the plurality of candidate alloy compositions which have passed all tests, wherein the at least one test includes at least: a phase equilibrium test in which predicted phase equilibrium is determined as a function of elemental composition of the individual one of the plurality
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: December 22, 2020
    Assignee: Oxford University Innovation Limited
    Inventors: Roger Reed, Zailing Zhu, David Crudden
  • Patent number: 10370740
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 12.3 and 15.2% chromium, between 4.8 and 12.0% cobalt, between 2.5 and 8.3% tungsten, between 0.0 and 0.5% molybdenum, between 0.0 and 0.5% rhenium, between 3.5 and 6.7% aluminium, between 6.1 and 10.7% tantalum, between 0.0 and up to 0.5% hafnium, between 0.0 and 0.5% niobium, between 0.0 and 0.5% titanium, between 0.0 and 0.5% vanadium, between 0.0 and 0.1% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.05% manganese, between 0.0 and 0.05% zirconium, between 0.0 and 0.005% boron, between 0.0 and 0.01% carbon, the balance being nickel and incidental impurities.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 6, 2019
    Assignee: Oxford University Innovation Limited
    Inventors: Roger Reed, Zailing Zhu, David Crudden
  • Patent number: 10358701
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 7.0 and 1.0% chromium, between 4.0 and 14.0% cobalt, between 1.0 and 2.0% rhenium, between 0.5 and 11.0% tungsten, between 0.0 and 0.5% molybdenum, between 4.0 and 6.5% aluminum, between 8.0 and 12.0 tantalum, between 0.0 and up to 0.5% hafnium, between 0.0 and 0.5% niobium, between 0.0 and 0.5% titanium, between 0.0 and 0.5% vanadium, between 0.0 and 0.1% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.05% manganese, between 0.0 and 0.05% zirconium, between 0.0 and 0.005% boron, between 0.0 and 0.01% carbon, the balance being nickel and incidental impurities.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: July 23, 2019
    Assignee: Oxford University Innovation Limited
    Inventors: Roger Reed, Zailing Zhu, David Crudden
  • Publication number: 20180216212
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 3.5 and 6.5% chromium, between 0.0 and 12.0% cobalt, between 4.5 and 11.5% tungsten, between 0.0 and 0.5% molybdenum, between 3.5 and 7.0% rhenium, between 1.0 and 3.7% ruthenium, between 3.7 and 6.8% aluminium, between 5.0 and 9.0% tantalum, between 0.0 and 0.5% hafnium, between 0.0 and 0.5% niobium, between 0.0 and 0.5% titanium, between 0.0 and 0.5% vanadium, between 0.0 and 0.1% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.05% manganese, between 0.0 and 0.05% zirconium, between 0.0 and 0.005% boron, between 0.0 and 0.01% carbon, the balance being nickel and incidental impurities.
    Type: Application
    Filed: July 20, 2016
    Publication date: August 2, 2018
    Inventors: Roger REED, Zailing ZHU, David CRUDDEN
  • Publication number: 20180195156
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 12.3 and 15.2% chromium, between 4.8 and 12.0% cobalt, between 2.5 and 8.3% tungsten, between 0.0 and 0.5% molybdenum, between 0.0 and 0.5% rhenium, between 3.5 and 6.7% aluminium, between 6.1 and 10.7% tantalum, between 0.0 and up to 0.5% hafnium, between 0.0 and 0.5% niobium, between 0.0 and 0.5% titanium, between 0.0 and 0.5% vanadium, between 0.0 and 0.1% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.05% manganese, between 0.0 and 0.05% zirconium, between 0.0 and 0.005% boron, between 0.0 and 0.01% carbon, the balance being nickel and incidental impurities.
    Type: Application
    Filed: June 30, 2016
    Publication date: July 12, 2018
    Inventors: Roger REED, Zailing ZHU, David CRUDDEN
  • Publication number: 20180082044
    Abstract: A computer assisted method of designing a designed alloy composition comprising a plurality of elements, the method comprising the steps of: populating a multi-dimensional alloy space with a plurality of candidate alloy compositions, the plurality of candidate alloy compositions including for each of the plurality of elements at least three candidate alloy compositions with different amounts of the respective element to each other; performing at least one test on each individual one of the plurality of candidate alloy compositions until each of the individual ones of the plurality of candidate alloy compositions fails a test or has passed all tests; outputting the designed alloy composition based on one or more of the individual ones of the plurality of candidate alloy compositions which have passed all tests, wherein the at least one test includes at least: a phase equilibrium test in which predicted phase equilibrium is determined as a function of elemental composition of the individual one of the plurality
    Type: Application
    Filed: March 23, 2016
    Publication date: March 22, 2018
    Inventors: Roger REED, Zailing ZHU, David CRUDDEN
  • Publication number: 20180066340
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 7.0 and 1.0% chromium, between 4.0 and 14.0% cobalt, between 1.0 and 2.0% rhenium, between 0.5 and 11.0% tungsten, between 0.0 and 0.5% molybdenum, between 4.0 and 6.5% aluminium, between 8.0 and 12.0 tantalum, between 0.0 and up to 0.5% hafnium, between 0.0 and 0.5% niobium, between 0.0 and 0.5% titanium, between 0.0 and 0.5% vanadium, between 0.0 and 0.1% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.05% manganese, between 0.0 and 0.05% zirconium, between 0.0 and 0.005% boron, between 0.0 and 0.01% carbon, the balance being nickel and incidental impurities.
    Type: Application
    Filed: March 23, 2016
    Publication date: March 8, 2018
    Inventors: Roger REED, Zailing ZHU, David CRUDDEN