Patents by Inventor Zaiyuan Ren

Zaiyuan Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240297269
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Application
    Filed: May 14, 2024
    Publication date: September 5, 2024
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Publication number: 20240128396
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Application
    Filed: December 11, 2023
    Publication date: April 18, 2024
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 11843072
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 12, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Publication number: 20210328094
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 11049994
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: June 29, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Publication number: 20210184079
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 17, 2021
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Patent number: 10923627
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: February 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Publication number: 20170345972
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Application
    Filed: August 17, 2017
    Publication date: November 30, 2017
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Publication number: 20170288089
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 5, 2017
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 9748442
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: August 29, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Patent number: 9705028
    Abstract: Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 11, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 9601658
    Abstract: Solid state lighting devices that can produce white light without a phosphor are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The active region includes a first sub-region having a first center wavelength and a second sub-region having a second center wavelength different from the first center wavelength.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: March 21, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Publication number: 20160087144
    Abstract: Solid state lighting devices that can produce white light without a phosphor are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The active region includes a first sub-region having a first center wavelength and a second sub-region having a second center wavelength different from the first center wavelength.
    Type: Application
    Filed: July 27, 2015
    Publication date: March 24, 2016
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 9093589
    Abstract: Solid state lighting devices that can produce white light without a phosphor are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The active region includes a first sub-region having a first center wavelength and a second sub-region having a second center wavelength different from the first center wavelength.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 28, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Zaiyuan Ren, Thomas Gehrke
  • Patent number: 9041005
    Abstract: Solid state lighting (“SSL”) devices with cellular arrays and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode includes a semiconductor material having a first surface and a second surface opposite the first surface. The semiconductor material has an aperture extending into the semiconductor material from the first surface. The light emitting diode also includes an active region in direct contact with the semiconductor material, and at least a portion of the active region is in the aperture of the semiconductor material.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 26, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Lifang Xu, Scott D. Schellhammer, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Publication number: 20150028347
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 29, 2015
    Inventors: Scott D. Schellhammer, Scott E. Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Publication number: 20140319536
    Abstract: Solid state lighting (“SSL”) devices with cellular arrays and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode includes a semiconductor material having a first surface and a second surface opposite the first surface. The semiconductor material has an aperture extending into the semiconductor material from the first surface. The light emitting diode also includes an active region in direct contact with the semiconductor material, and at least a portion of the active region is in the aperture of the semiconductor material.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Scott E. Sills, Lifang Xu, Scott D. Schellhammer, Thomas Gehrke, Zaiyuan Ren, Anton J. De Villiers
  • Patent number: 8865495
    Abstract: Solid state lighting devices grown on semi-polar facets and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (“GaN”) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (“InGaN”)/GaN multi quantum well (“MQW”) active region directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN/GaN MQW, and P-type GaN materials is grown a semi-polar sidewall.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: October 21, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Lifang Xu, Zaiyuan Ren
  • Patent number: 8859305
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: October 14, 2014
    Assignee: Macron Technology, Inc.
    Inventors: Scott Schellhammer, Scott Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton De Villiers
  • Patent number: 8709846
    Abstract: Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (GaN) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (InGaN) material directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN, and P-type GaN materials has a non-planar surface.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: April 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Niraj Rana, Zaiyuan Ren