Patents by Inventor Zaw Soe

Zaw Soe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130078933
    Abstract: Very high frequency circuits suffer from parasitic resistances. At 60 GHz, conventional layout techniques can introduce loss into the circuit at critical locations. One critical interconnect between the output of a pre-driver and the gate of the final output stage causes 1 or 2 dB of loss due to the layout. By minimizing the number of via contacts, this conventional loss can be recovered using this new layout technique. In addition, a tap point of a via stack is used to modify the resonant characteristics of the interconnect. Finally, cross coupled devices in a resonant circuit are used to reduce the common mode noise at the expense of the common mode gain.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: Tensorcom, Inc.
    Inventor: Zaw Soe
  • Patent number: 8406710
    Abstract: Very high frequency circuits suffer from parasitic resistances. At 60 GHz, conventional layout techniques can introduce loss into the circuit at critical locations. One critical interconnect between the output of a pre-driver and the gate of the final output stage causes 1 or 2 dB of loss due to the layout. By minimizing the number of via contacts, this conventional loss can be recovered using this new layout technique. In addition, a tap point of a via stack is used to modify the resonant characteristics of the interconnect. Finally, cross coupled devices in a resonant circuit are used to reduce the common mode noise at the expense of the common mode gain.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 26, 2013
    Assignee: Tensorcom, Inc.
    Inventor: Zaw Soe
  • Publication number: 20120319673
    Abstract: This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: Tensorcom, Inc.
    Inventors: KhongMeng Tham, Zaw Soe
  • Publication number: 20070236267
    Abstract: The inventive technique can dynamically adjust the current being applied within the components of a prescaler or divider. This dynamic scaling of the current can improve the speed of the divider by a factor of two or reduce the average current in half when compared to the conventional prescaler. Inverters are used to directly adjust the dynamic value of the currents. The removal of the conventional NMOS device within the conventional circuit eliminates one gate delay in the CML prescaler. Second, the inventive prescaler circuits operate under a current injection/extraction technique. A group of small matched inverters can be used to drive each current switching circuit independently within the entire prescaler as compared to a large buffer driving the entire conventional prescaler. Finally, dynamic current scaling offers the designer additional flexibility in the design trade off between the maximum current applied to the load and achieving the maximum performance.
    Type: Application
    Filed: April 5, 2006
    Publication date: October 11, 2007
    Applicant: WIONICS RESEARCH
    Inventors: Behzad Razavi, Zaw Soe
  • Publication number: 20070218851
    Abstract: Multistage RF transmitter and receiver circuits may use independently variable RF and IF local oscillators, allowing the RF and IF local oscillator frequencies for a given RF channel to be selected to have a large common factor with respect to the reference oscillator used by the local oscillator circuits, thus allowing the use of small divisor numbers in the local oscillator circuits and reducing phase noise. Independent high-side and low-side RF local oscillators may be provided and selectively used depending on the RF channel to be transmitted or received.
    Type: Application
    Filed: May 16, 2007
    Publication date: September 20, 2007
    Inventors: Zaw Soe, Tony Yang, Jackie Cheng, Sining Zhou, Kuangyu Li, Fei-Ran Yang, Shoufang Chen, Tom Baker
  • Publication number: 20070155350
    Abstract: The present invention provides reduces the number of required synthesizers thereby reducing the area and power concerns to extract/insert a signal from/to a multi-channel communication system and is also known as frequency planning. The highest frequency of operation required for the synthesizers or oscillators is approximately the midpoint of the entire signal frequency range. Two superimposed Weaver architectures are used to form the architecture. The receiver extracts the baseband I and Q signals from the multi-channel communication system, while the transmitter upconverts the baseband I and Q signals to the multi-channel communication system. The Weaver architecture, depending on the select bit, can enhance the image signal and reduce the desired signal or the image signal can be reduced while the desired signal is enhanced. Because the image and signal components are symmetrically displaced from the RF LO, less IF LO frequencies or synthesizers are required to operate the system.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 5, 2007
    Applicant: WIONICS RESEARCH
    Inventors: Behzad Razavi, Zaw Soe
  • Publication number: 20070155348
    Abstract: The present invention describes a transmitter/receiver architecture that uses a Weaver architecture in conjunction with digitally controlled adder/subtractor components to insert/extract a signal into/from the multi-channel system. In the transmitter, the selection of the band select bit causes the up/downconverted IF baseband I and Q signals to insert/extract on either side of an RF LO signal. In addition, the image of the first LO is eliminated while the desired signal is enhanced after passing through this new architecture. The invention also adds an RSSI circuit to the MBOA Weaver architecture receiver architecture to detect whether an 802.11 WLAN signal is interfering with the desired UWB signal. If so, the system is designed to detect this interference and jump to a new frequency range to avoid this interference. This invention focuses on devices that operate over the entire UWB band including the newly formed 60 GHz UWB band system.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 5, 2007
    Applicant: WIONICS RESEARCH
    Inventors: Behzad Razavi, Zaw Soe
  • Publication number: 20050264335
    Abstract: Delays are produced in differential signals using a variable capacitance provided by MOS varactors coupled between the differential signals. The capacitance values of the MOS varactors is controlled by a bias voltage applied to the bodies of the varactors. Selective application of bias voltages to the MOS varactors may be employed to selectively delay one pair of differential signals with respect to another pair of differential signals so as to change the relative phases of the signals. A logic circuit may be used to control the application of bias voltage to the MOS varactors so that signal phases may be adjusted in a manner that is predictable and programmable. These methods may be implemented to compensate for phase offsets between in-phase and quadrature signals of a local oscillator.
    Type: Application
    Filed: May 28, 2004
    Publication date: December 1, 2005
    Inventor: Zaw Soe
  • Publication number: 20050258989
    Abstract: Systems and methods for canceling static and dynamic DC offsets by combining a digital DC offset correction scheme with an analog DC offset correction scheme. A feedback-based digital DC offset correction scheme provides different adjustment levels for a plurality of discrete gain states and the analog DC offset correction scheme operates in different cancellation modes dependent on a frame structure. A digital DC offset correction scheme collects DC offset control information and provides adjustment levels. In addition, a negative-feedback based switchable high pass filter has a plurality modes of operation, where one mode of operation includes an all-pass filter.
    Type: Application
    Filed: May 21, 2004
    Publication date: November 24, 2005
    Inventors: Kuangyu Li, Song-Nien Tang, Jackie Cheng, Zaw Soe
  • Publication number: 20050195003
    Abstract: A charge pump circuit utilizes active feedback control circuits to control the currents produced by sinking and sourcing current sources. The feedback control circuits may regulate the drain voltages of sinking and sourcing current source transistors to make them approximately equal to respective reference voltages received by the feedback control circuits. The charge pump circuit may utilize multiple supply voltages, with a higher supply voltage such as a 3.3 V supply voltage being used to drive current source transistors, and a lower supply voltage such as a 1.8 V supply voltage being used to drive switches in a switching section.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 8, 2005
    Inventor: Zaw Soe