Patents by Inventor Zbigniew Sobolewski

Zbigniew Sobolewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913785
    Abstract: An optical fiber ring interferometer is provided, which is based on a common light path for two or more light beam pairs preferably originated from two or more light sources of a substantially different spectrum or from a single light source split spectrum and whereas each light beam of a specific pair is propagating in relative opposite directions, wherein at least one pair of light beams is utilized to detect acousto-mechanical events and to provide information regarding location and other characteristics of detected environmental disturbance.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: February 27, 2024
    Inventor: Zbigniew Sobolewski
  • Publication number: 20230417534
    Abstract: An optical fiber ring interferometer is provided, which is based on a common light path for two or more light beam pairs preferably originated from two or more light sources of a substantially different spectrum or from a single light source split spectrum and whereas each light beam of a specific pair is propagating in relative opposite directions, wherein at least one pair of light beams is utilized to detect acousto-mechanical events and to provide information regarding location and other characteristics of detected environmental disturbance.
    Type: Application
    Filed: June 29, 2023
    Publication date: December 28, 2023
    Inventor: Zbigniew Sobolewski
  • Publication number: 20230417535
    Abstract: An optical fiber ring interferometer is provided, which is based on a common light path for two or more light beam pairs preferably originated from two or more light sources of a substantially different spectrum or from a single light source split spectrum and whereas each light beam of a specific pair is propagating in relative opposite directions, wherein at least one pair of light beams is utilized to detect acousto-mechanical events and to provide information regarding location and other characteristics of detected environmental disturbance.
    Type: Application
    Filed: June 29, 2023
    Publication date: December 28, 2023
    Inventor: Zbigniew Sobolewski
  • Patent number: 11768311
    Abstract: A nuclear magnetic resonance (NMR) downhole tool and method that may include a housing, a power source, a Radio Frequency (RF) pulse generator tank electrically connected to the power source, a power switch electrically disposed within the RF pulse generator tank and disposed in the housing, and an NMR signal acquisition tank electrically connected to the RF pulse generator tank and disposed in the housing. The method may include disposing the NMR downhole tool into a wellbore, charging a first capacitor with the power source that is electrically connected to the first capacitor, generating a RF pulse, disconnecting the first capacitor from the RF pulse generator tank, and storing energy from the inductive coil in the first capacitor. The method may further include connecting the inductive coil to an NMR signal acquisition tank using a decoupler switch and acquiring an NMR signal with the NMR signal acquisition tank.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: September 26, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Zbigniew Sobolewski, Arcady Reiderman
  • Publication number: 20230145921
    Abstract: A nuclear magnetic resonance (NMR) downhole tool and method that may include a housing, a power source, a Radio Frequency (RF) pulse generator tank electrically connected to the power source, a power switch electrically disposed within the RF pulse generator tank and disposed in the housing, and an NMR signal acquisition tank electrically connected to the RF pulse generator tank and disposed in the housing. The method may include disposing the NMR downhole tool into a wellbore, charging a first capacitor with the power source that is electrically connected to the first capacitor, generating a RF pulse, disconnecting the first capacitor from the RF pulse generator tank, and storing energy from the inductive coil in the first capacitor. The method may further include connecting the inductive coil to an NMR signal acquisition tank using a decoupler switch and acquiring an NMR signal with the NMR signal acquisition tank.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 11, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Zbigniew Sobolewski, Arcady Reiderman
  • Publication number: 20210325169
    Abstract: An optical fiber ring interferometer is provided, which is based on a common light path for two or more light beam pairs preferably originated from two or more light sources of a substantially different spectrum or from a single light source split spectrum and whereas each light beam of a specific pair is propagating in relative opposite directions, wherein at least one pair of light beams is utilized to detect acousto-mechanical events and to provide information regarding location and other characteristics of detected environmental disturbance.
    Type: Application
    Filed: April 19, 2021
    Publication date: October 21, 2021
    Inventor: Zbigniew Sobolewski
  • Patent number: 9932816
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for mounting a strain sensor on a tubular pipe, which includes a mechanical clamp. The clamp has a bottom flexing section having an arcuate portion terminating at a first terminal and at a second end, and a first and second upper flexing sections having an arcuate portions terminating at first terminal ends and at second terminal ends in a pivot pin assembly having a bore parallel to a central longitudinal axis of the clamp, the bore there through for receiving a removable connector. Sensor mounting arms are disposed outwardly on the first and second upper flexing sections, said sensor mounting arms including at least one receptacle sized to receive and retain ends of a strain gauge.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: April 3, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Zbigniew Sobolewski, Mark A. Sitka
  • Patent number: 9593569
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for removably attaching an optical fiber sensor loop onto a tubular member, which includes an optical fiber sensor loop having a continuous optical fiber positioned arranged in a plurality of loops, each of said loops having a first end turn and a second end turn, a first and a second turn guide each including a plurality of turn grooves increasing outwardly in increasing radii, each of said turn grooves configured to receive an end turn portion of the optical fiber, a first and a second supporting wedge each having a planar first surface configured to receive a turn guide and a curved second surface configured to be received on the tubular member, and a connector configured to couple the first mounting wedge to the second mounting wedge.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: March 14, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Zbigniew Sobolewski, Ronald L. Spross, Gary Nguyen, Mark A. Sitka
  • Publication number: 20170044892
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for removably attaching an optical fiber sensor loop onto a tubular member, which includes an optical fiber sensor loop having a continuous optical fiber positioned arranged in a plurality of loops, each of said loops having a first end turn and a second end turn, a first and a second turn guide each including a plurality of turn grooves increasing outwardly in increasing radii, each of said turn grooves configured to receive an end turn portion of the optical fiber, a first and a second supporting wedge each having a planar first surface configured to receive a turn guide and a curved second surface configured to be received on the tubular member, and a connector configured to couple the first mounting wedge to the second mounting wedge.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Zbigniew Sobolewski, Ronald L. Spross, Gary Nguyen, Mark A. Sitka
  • Publication number: 20170044891
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for mounting a strain sensor on a tubular pipe, which includes a mechanical clamp. The clamp has a bottom flexing section having an arcuate portion terminating at a first terminal and at a second end, and a first and second upper flexing sections having an arcuate portions terminating at first terminal ends and at second terminal ends in a pivot pin assembly having a bore parallel to a central longitudinal axis of the clamp, the bore there through for receiving a removable connector. Sensor mounting arms are disposed outwardly on the first and second upper flexing sections, said sensor mounting arms including at least one receptacle sized to receive and retain ends of a strain gauge.
    Type: Application
    Filed: October 28, 2016
    Publication date: February 16, 2017
    Inventors: Zbigniew Sobolewski, Mark A. Sitka
  • Patent number: 9512711
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for removably attaching an optical fiber sensor loop onto a tubular member, which includes an optical fiber sensor loop having a continuous optical fiber positioned arranged in a plurality of loops, each of said loops having a first end turn and a second end turn, a first and a second turn guide each including a plurality of turn grooves increasing outwardly in increasing radii, each of said turn grooves configured to receive an end turn portion of the optical fiber, a first and a second supporting wedge each having a planar first surface configured to receive a turn guide and a curved second surface configured to be received on the tubular member, and a connector configured to couple the first mounting wedge to the second mounting wedge.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: December 6, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Zbigniew Sobolewski, Ronald L. Spross, Gary Nguyen, Mark A. Sitka
  • Patent number: 9512714
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for mounting a strain sensor on a tubular pipe, which includes a mechanical clamp. The clamp has a bottom flexing section having an arcuate portion terminating at a first terminal and at a second end, and a first and second upper flexing sections having an arcuate portions terminating at first terminal ends and at second terminal ends in a pivot pin assembly having a bore parallel to a central longitudinal axis of the clamp, the bore there through for receiving a removable connector. Sensor mounting arms are disposed outwardly on the first and second upper flexing sections, said sensor mounting arms including at least one receptacle sized to receive and retain ends of a strain gauge.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: December 6, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Zbigniew Sobolewski, Mark A. Sitka
  • Publication number: 20160230534
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for removably attaching an optical fiber sensor loop onto a tubular member, which includes an optical fiber sensor loop having a continuous optical fiber positioned arranged in a plurality of loops, each of said loops having a first end turn and a second end turn, a first and a second turn guide each including a plurality of turn grooves increasing outwardly in increasing radii, each of said turn grooves configured to receive an end turn portion of the optical fiber, a first and a second supporting wedge each having a planar first surface configured to receive a turn guide and a curved second surface configured to be received on the tubular member, and a connector configured to couple the first mounting wedge to the second mounting wedge.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 11, 2016
    Inventors: Zbigniew Sobolewski, Ronald L. Spross, Gary Nguyen, Mark A. Sitka
  • Publication number: 20160230535
    Abstract: The subject matter of this specification can be embodied in, among other things, a system for mounting a strain sensor on a tubular pipe, which includes a mechanical clamp. The clamp has a bottom flexing section having an arcuate portion terminating at a first terminal and at a second end, and a first and second upper flexing sections having an arcuate portions terminating at first terminal ends and at second terminal ends in a pivot pin assembly having a bore parallel to a central longitudinal axis of the clamp, the bore there through for receiving a removable connector. Sensor mounting arms are disposed outwardly on the first and second upper flexing sections, said sensor mounting arms including at least one receptacle sized to receive and retain ends of a strain gauge.
    Type: Application
    Filed: December 27, 2013
    Publication date: August 11, 2016
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Zbigniew Sobolewski, Mark A. Sitka