Patents by Inventor Zdenko Vizintin

Zdenko Vizintin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230293233
    Abstract: A treatment method for non-ablative tissue regeneration includes directing at least one laser pulse having a wavelength onto a tissue surface of a human or animal body, and controlling an energy delivery time ted of the at least one laser pulse, during which the second half of the pulse energy is delivered, to be sufficiently short, so that, given the wavelength and thus a corresponding penetration depth ? of the at least one laser pulse, a thermal exposure time texp of the tissue surface is smaller than 900 microseconds. The thermal exposure time texp of the tissue surface is defined as a time interval in which the temperature of the tissue surface is above To + (Tmax - To)/2, wherein To defines the initial temperature of the tissue surface, before the laser pulse arrives, and Tmax is a maximal temperature of the tissue surface.
    Type: Application
    Filed: April 5, 2023
    Publication date: September 21, 2023
    Inventors: Matjaz LUKAC, Franci BAJD, Marko KAZIC, Zdenko VIZINTIN, Tadej PERHAVEC
  • Patent number: 11648056
    Abstract: A treatment method for non-ablative tissue regeneration includes directing at least one laser pulse having a wavelength onto a tissue surface of a human or animal body, and controlling an energy delivery time ted of the at least one laser pulse, during which the second half of the pulse energy is delivered, to be sufficiently short, so that, given the wavelength and thus a corresponding penetration depth ? of the at least one laser pulse, a thermal exposure time texp of the tissue surface is smaller than 900 microseconds. The thermal exposure time texp of the tissue surface is defined as a time interval in which the temperature of the tissue surface is above To+(Tmax?To)/2, wherein To defines the initial temperature of the tissue surface, before the laser pulse arrives, and Tmax is a maximal temperature of the tissue surface.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: May 16, 2023
    Assignee: Fotona d.o.o.
    Inventors: Matjaz Lukac, Franci Bajd, Marko Kazic, Zdenko Vizintin, Tadej Perhavec
  • Patent number: 11648417
    Abstract: An apparatus for tissue regeneration is provided. The apparatus comprises means for generating at least one laser pulse comprising a wavelength; and means for directing the at least one laser pulse onto a tissue surface of a human or animal body, wherein the means for generating comprises control means to ensure that a sum of the pulse energies of the at least one laser pulse is selected so that the corresponding fluence on the tissue surface heats the tissue surface up to a maximal temperature Tmax between 70° C. and a tissue boiling temperature Tb. Further, the means for generating of the apparatus are adapted so that a delivery time ted of the at least one laser pulse (during which the second half of the pulse energy is delivered) is sufficiently short so that, given the wavelength and thus a corresponding penetration depth ? of the at least one laser pulse, a thermal exposure time texp of the tissue surface is shorter than 900 microseconds.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 16, 2023
    Assignee: Fotona d.o.o.
    Inventors: Matjaz Lukac, Franci Bajd, Marko Kazic, Zdenko Vizintin, Tadej Perhavec
  • Publication number: 20200170704
    Abstract: A treatment method for non-ablative tissue regeneration includes directing at least one laser pulse having a wavelength onto a tissue surface of a human or animal body, and controlling an energy delivery time ted of the at least one laser pulse, during which the second half of the pulse energy is delivered, to be sufficiently short, so that, given the wavelength and thus a corresponding penetration depth ? of the at least one laser pulse, a thermal exposure time texp of the tissue surface is smaller than 900 microseconds. The thermal exposure time texp of the tissue surface is defined as a time interval in which the temperature of the tissue surface is above To+(Tmax?To)/2, wherein To defines the initial temperature of the tissue surface, before the laser pulse arrives, and Tmax is a maximal temperature of the tissue surface.
    Type: Application
    Filed: January 10, 2020
    Publication date: June 4, 2020
    Inventors: Matjaz LUKAC, Franci BAJD, Marko KAZIC, Zdenko VIZINTIN, Tadej PERHAVEC
  • Publication number: 20190351253
    Abstract: An apparatus for tissue regeneration is provided. The apparatus comprises means for generating at least one laser pulse comprising a wavelength; and means for directing the at least one laser pulse onto a tissue surface of a human or animal body, wherein the means for generating comprises control means to ensure that a sum of the pulse energies of the at least one laser pulse is selected so that the corresponding fluence on the tissue surface heats the tissue surface up to a maximal temperature Tmax between 70° C. and a tissue boiling temperature Tb. Further, the means for generating of the apparatus are adapted so that a delivery time ted of the at least one laser pulse (during which the second half of the pulse energy is delivered) is sufficiently short so that, given the wavelength and thus a corresponding penetration depth ? of the at least one laser pulse, a thermal exposure time texp of the tissue surface is shorter than 900 microseconds.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 21, 2019
    Inventors: Matjaz Lukac, Franci Bajd, Marko Kazic, Zdenko Vizintin, Tadej Perhavec
  • Patent number: 9254174
    Abstract: For lightening or eradicating pigments in human skin, a first conditioning laser optical energy having first optical parameters selected to obtain an ablative effect on the epidermal layer of human skin is provided. A target area of the human skin is conditioned by directing the first conditioning laser optical energy onto the target area and forming in an epidermal layer of the target area discrete pressure and gas release ducts across the target area. A second treatment laser optical energy is provided that has second optical parameters selected to obtain a lightening or eradicating effect on the pigments located within the human skin and to substantially avoid damaging the epidermal layer of the human skin. The second treatment laser optical energy is directed onto the target area subsequent to conditioning, and the pigments within the human skin are lightenmed or eradicated by the second treatment laser optical energy.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 9, 2016
    Assignee: Fotona d.o.o.
    Inventors: Matjaz Lukac, Zdenko Vizintin, Boris Cencic
  • Publication number: 20140243804
    Abstract: For lightening or eradicating pigments in human skin, a first conditioning laser optical energy having first optical parameters selected to obtain an ablative effect on the epidermal layer of human skin is provided. A target area of the human skin is conditioned by directing the first conditioning laser optical energy onto the target area and forming in an epidermal layer of the target area discrete pressure and gas release ducts across the target area. A second treatment laser optical energy is provided that has second optical parameters selected to obtain a lightening or eradicating effect on the pigments located within the human skin and to substantially avoid damaging the epidermal layer of the human skin. The second treatment laser optical energy is directed onto the target area subsequent to conditioning, and the pigments within the human skin are lightenmed or eradicated by the second treatment laser optical energy.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: FOTONA D.D.
    Inventors: Matjaz Lukac, Zdenko Vizintin
  • Patent number: 8709057
    Abstract: A laser system has a laser source for generating a laser beam, a control unit, and a hand piece for manually guiding the laser beam onto a target area. A wavelength (?) of the laser beam is in a range from above 1.9 ?m to 11.0 ?m inclusive. The laser system is adapted for a thermal, non ablative treatment of mucosa tissue by the laser beam such, that the laser source generates the laser beam in single pulses with a pulse duration (tp) in a range from 1.0 ?s, inclusive, to 1.0 sec, inclusive, and that a fluence of each of the single pulses on the target area of the mucosa tissue is in a range from 0.2 J/cm2, inclusive, to 2.5 J/cm2, inclusive, and preferably in a range from 1.40 J/cm2, inclusive, to 1.95 J/cm2, inclusive.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: April 29, 2014
    Assignee: Fotona d.d.
    Inventors: Marcelo Tettamanti, Zdenko Vizintin, Marko Kazic, Matjaz Lukac
  • Publication number: 20120179229
    Abstract: A laser system has a laser source for generating a laser beam, a control unit, and a hand piece for manually guiding the laser beam onto a target area. A wavelength (?) of the laser beam is in a range from above 1.9 ?m to 11.0 ?m inclusive. The laser system is adapted for a thermal, non ablative treatment of mucosa tissue by the laser beam such, that the laser source generates the laser beam in single pulses with a pulse duration (tp) in a range from 1.0 ?s, inclusive, to 1.0 sec, inclusive, and that a fluence of each of the single pulses on the target area of the mucosa tissue is in a range from 0.2 J/cm2, inclusive, to 2.5 J/cm2, inclusive, and preferably in a range from 1.40 J/cm2, inclusive, to 1.95 J/cm2, inclusive.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 12, 2012
    Applicant: FOTONA D.D.
    Inventors: Marcelo Tettamanti, Zdenko Vizintin, Marko Kazic, Matjaz Lukac