Patents by Inventor Zechariah D. Feinberg

Zechariah D. Feinberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901585
    Abstract: A method of forming a component can include electrochemically depositing a metallic material onto a carrier component to a thickness of greater than 50 microns. The metallic material can include crystal grains and at least 90% of the crystal grains can include nanotwin boundaries. The metallic material can include at least one of copper or silver.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: February 13, 2024
    Assignee: APPLE INC.
    Inventors: Hoishun Li, Herng-Jeng Jou, James A. Yurko, Wai Man Raymund Kwok, Zechariah D. Feinberg, Daniel C. Wagman, Eric S. Jol, Hani Esmaeili
  • Publication number: 20230375801
    Abstract: A head-mounted device may have optical modules that present images to a user's eyes. Each optical module may have a lens barrel with a display and a lens that presents an image from the display to a corresponding eye box. To accommodate users with different interpupillary distances, the optical modules may be slidably coupled to guide members such as guide rods. Actuators may slide the optical modules towards or away from each other along the guide rods. The guide rods may be formed from fiber-composite tubes with end caps that are fastened to a frame in the head-mounted device. The tubes may be partly or completely filled with cores to add strength. Low-friction coatings such as metal coatings may be formed on the fiber-composite tubes and the corresponding inner surfaces of the optical module structures that slidably engage the fiber-composite tubes.
    Type: Application
    Filed: June 7, 2023
    Publication date: November 23, 2023
    Inventors: Ivan S. Maric, Aidan N. Zimmerman, David R. Cramer, Zechariah D. Feinberg, Samuel A. Resnick
  • Patent number: 11714256
    Abstract: A head-mounted device may have optical modules that present images to a user's eyes. Each optical module may have a lens barrel with a display and a lens that presents an image from the display to a corresponding eye box. To accommodate users with different interpupillary distances, the optical modules may be slidably coupled to guide members such as guide rods. Actuators may slide the optical modules towards or away from each other along the guide rods. The guide rods may be formed from fiber-composite tubes with end caps that are fastened to a frame in the head-mounted device. The tubes may be partly or completely filled with cores to add strength. Low-friction coatings such as metal coatings may be formed on the fiber-composite tubes and the corresponding inner surfaces of the optical module structures that slidably engage the fiber-composite tubes.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: August 1, 2023
    Assignee: Apple Inc.
    Inventors: Ivan S. Maric, Aidan N. Zimmerman, David R. Cramer, Zechariah D. Feinberg, Samuel A. Resnick
  • Patent number: 11549191
    Abstract: Anodic oxide coatings that provide corrosion resistance to parts having protruding features, such as edges, corners and convex-shaped features, are described. According to some embodiments, the anodic oxide coatings include an inner porous layer and an outer porous layer. The inner layer is adjacent to an underlying metal substrate and is formed under compressive stress anodizing conditions that allow the inner porous layer to be formed generally crack-free. In this way, the inner porous layer acts as a barrier that prevents water or other corrosion-inducing agents from reaching the underlying metal substrate. The outer porous layer can be thicker and harder than the inner porous layer, thereby increasing the overall hardness of the anodic oxide coating.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: January 10, 2023
    Assignee: APPLE INC.
    Inventors: James A. Curran, Zechariah D. Feinberg, Sonja R. Postak
  • Patent number: 11459668
    Abstract: An enclosure for a portable electronic device can include a titanium substrate defining a textured surface and a nominal surface. The titanium substrate can include a first region that extends above the nominal surface and a second region adjacent to the first region and extending below the nominal surface. A separation distance between an apex of the first region and a bottom of a trough defined by the second region can be at least 1 micrometer. A metal oxide layer can overlay the trough defined by the second region.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: October 4, 2022
    Assignee: APPLE, INC.
    Inventors: Zechariah D. Feinberg, James A. Curran, Todd S. Mintz, Justin Memar-Makhsous
  • Patent number: 11419232
    Abstract: This application relates to a portable electronic device. The portable electronic device includes an enclosure having a metal oxide coating, the metal oxide coating including a metal alloy substrate that is doped with a dopant, and a metal oxide layer overlaying and formed from the metal alloy substrate so that the metal oxide layer includes the dopant.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Hoishun Li, Zechariah D. Feinberg, Theodore A. Waniuk
  • Patent number: 11352708
    Abstract: Colored oxide coatings having multiple oxide layers are described. Processes for forming the multilayer oxide coating can include converting a portion of a metal substrate to a primary oxide layer, coloring the primary oxide layer, and depositing a secondary oxide layer on the primary oxide layer. The primary oxide layer and the secondary oxide layer can be at least partially transparent such that a texture of an underlying metal substrate surface is visible through the multilayer oxide coating. A top surface of the secondary oxide layer can be polished to a high gloss to give the multilayer oxide coating an appearance of depth.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: June 7, 2022
    Assignee: Apple Inc.
    Inventors: James A. Curran, Karin H. Rasmussen, Zechariah D. Feinberg
  • Patent number: 11345980
    Abstract: The disclosure provides an aluminum alloy may include iron (Fe) of at least 0.10 wt %, silicon (Si) of at least 0.35 wt %, and magnesium (Mg) of at least 0.45 wt %, manganese (Mn) in amount of at least 0.005 wt %, and additional elements, the remaining wt % being Al and incidental impurities.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 31, 2022
    Assignee: Apple Inc.
    Inventors: Brian M. Gable, Herng-Jeng Jou, Weiming Huang, Graeme W. Paul, William A. Counts, Eric W. Hamann, Katie L. Sassaman, Abhijeet Misra, Zechariah D. Feinberg, James A. Yurko, Brian P. Demers, Rafael Yu, Anuj Datta Roy, Susannah P. Calvin
  • Publication number: 20210348294
    Abstract: An enclosure for a portable electronic device can include a titanium substrate defining a textured surface and a nominal surface. The titanium substrate can include a first region that extends above the nominal surface and a second region adjacent to the first region and extending below the nominal surface. A separation distance between an apex of the first region and a bottom of a trough defined by the second region can be at least 1 micrometer. A metal oxide layer can overlay the trough defined by the second region.
    Type: Application
    Filed: November 19, 2020
    Publication date: November 11, 2021
    Inventors: Zechariah D. FEINBERG, James A. CURRAN, Todd S. MINTZ, Justin MEMAR-MAKHSOUS
  • Publication number: 20210333506
    Abstract: A head-mounted device may have optical modules that present images to a user's eyes. Each optical module may have a lens barrel with a display and a lens that presents an image from the display to a corresponding eye box. To accommodate users with different interpupillary distances, the optical modules may be slidably coupled to guide members such as guide rods. Actuators may slide the optical modules towards or away from each other along the guide rods. The guide rods may be formed from fiber-composite tubes with end caps that are fastened to a frame in the head-mounted device. The tubes may be partly or completely filled with cores to add strength. Low-friction coatings such as metal coatings may be formed on the fiber-composite tubes and the corresponding inner surfaces of the optical module structures that slidably engage the fiber-composite tubes.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 28, 2021
    Inventors: Ivan S. Maric, Aidan N. Zimmerman, David R. Cramer, Zechariah D. Feinberg, Samuel A. Resnick
  • Publication number: 20210159477
    Abstract: A method of forming a component can include electrochemically depositing a metallic material onto a carrier component to a thickness of greater than 50 microns. The metallic material can include crystal grains and at least 90% of the crystal grains can include nanotwin boundaries. The metallic material can include at least one of copper or silver.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 27, 2021
    Inventors: Hoishun Li, Herng-Jeng Jou, James A. Yurko, Wai Man Raymund Kwok, Zechariah D. Feinberg, Daniel C. Wagman, Eric S. Jol, Hani Esmaeili
  • Publication number: 20210084784
    Abstract: This application relates to a portable electronic device. The portable electronic device includes an enclosure having a metal oxide coating, the metal oxide coating including a metal alloy substrate that is doped with a dopant, and a metal oxide layer overlaying and formed from the metal alloy substrate so that the metal oxide layer includes the dopant.
    Type: Application
    Filed: May 7, 2020
    Publication date: March 18, 2021
    Inventors: Hoishun LI, Zechariah D. FEINBERG, Theodore A. WANIUK
  • Patent number: 10927473
    Abstract: Oxide coatings that reduce or eliminate the appearance of thin film interference coloring are described. In some embodiments, the oxide coatings are configured to reduce the appearance of fingerprints. In some cases, the oxide coatings are sufficiently thick to increase the optical path difference of incident light, thereby reducing any inference coloring by the fingerprint to a non-visible level. In some embodiments, the oxide coatings have a non-uniform thickness that changes the way light reflects off of interfaces of the oxide coating, thereby reducing or eliminating any thin film interference coloring caused by the oxide coatings themselves or by a fingerprint.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: February 23, 2021
    Assignee: APPLE INC.
    Inventors: James A. Curran, Zechariah D. Feinberg, Christopher D. Prest, Joseph C. Poole
  • Patent number: 10842035
    Abstract: This application relates to an enclosure for a portable electronic device. The enclosure includes a titanium substrate having interstitial nitrogen atoms, where the titanium substrate is characterized as having an a* value that is less than 1, a b* value that is less than 5, and an L* value that is more than 70.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 17, 2020
    Assignee: APPLE INC.
    Inventors: James A. Curran, Zechariah D. Feinberg, Todd S. Mintz
  • Publication number: 20200332400
    Abstract: An electronic device can include a component including a first material joined to a component including a second, different material. The first material can include steel and copper, while the second material can include aluminum. The first material can be joined to the second material by a pulsed laser welding process that forms an interface region having a ratio of an interface region length to a lateral length greater than about 1.4.
    Type: Application
    Filed: August 6, 2019
    Publication date: October 22, 2020
    Inventors: Zechariah D. Feinberg, Abhijeet Misra, Lei Gao, Matthew D. Walker, Logan Ames, Duy P. Le, Vince Yan
  • Patent number: 10782741
    Abstract: Composite coatings having improved abrasion and dent resistance are described. According to some embodiments, the composite coatings include an outer hard layer and an intermediate layer between the outer hard layer and a metal substrate. The intermediate layer can have a hardness that is less than the hard outer layer but greater than the metal substrate. In this arrangement, the intermediate layer can act as a structural support that resists plastic deformation when an impact force is applied to the coating. In some embodiments, the intermediate layer is composed of a porous anodic oxide material. In some embodiments, the outer hard layer is composed of a ceramic material or a hard carbon-based material, such as diamond-like carbon.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: September 22, 2020
    Assignee: APPLE INC.
    Inventors: James A. Curran, Zechariah D. Feinberg, Brian S. Tryon
  • Patent number: 10711363
    Abstract: A process is disclosed for minimizing the difference in thermal expansivity between a porous anodic oxide coating and its corresponding substrate metal, so as to allow heat treatments or high temperature exposure of the anodic oxide without thermally induced crazing. A second phase of higher thermal expansivity than that of the oxide material is incorporated into the pores of the oxide in sufficient quantity to raise the coating's thermal expansion coefficient. The difference in thermal expansion between the anodic oxide coating and underlying metal substrate is reduced to a level such that thermal exposure is insufficient for any cracking to result. The second phase may be an electrodeposited metal, or an electrophoretically deposited polymer. The second phase may be uniformly deposited to a certain depth, or may be deposited at varying amounts among the pores.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 14, 2020
    Assignee: APPLE INC.
    Inventors: James A. Curran, William A. Counts, Zechariah D. Feinberg
  • Patent number: 10669618
    Abstract: A method for providing a surface finish to a metal part includes both diffusion hardening a metal surface to form a diffusion-hardened layer, and oxidizing the diffusion-hardened layer to create an oxide coating thereon. The diffusion-hardened layer can be harder than an internal region of the metal part and might be ceramic, and the oxide coating can have a color that is different from the metal or ceramic, the color being unachievable only by diffusion hardening or only by oxidizing. The metal can be titanium or titanium alloy, the diffusion hardening can include carburizing or nitriding, and the oxidizing can include electrochemical oxidization. The oxide layer thickness can be controlled via the amount of voltage applied during oxidation, with the oxide coating color being a function of thickness. An enhanced hardness profile can extend to a depth of at least 20 microns below the top of the oxide coating.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: June 2, 2020
    Assignee: APPLE INC.
    Inventors: James A. Curran, Zechariah D. Feinberg
  • Publication number: 20200080219
    Abstract: Anodic oxide coatings that provide corrosion resistance to parts having protruding features, such as edges, corners and convex-shaped features, are described. According to some embodiments, the anodic oxide coatings include an inner porous layer and an outer porous layer. The inner layer is adjacent to an underlying metal substrate and is formed under compressive stress anodizing conditions that allow the inner porous layer to be formed generally crack-free. In this way, the inner porous layer acts as a barrier that prevents water or other corrosion-inducing agents from reaching the underlying metal substrate. The outer porous layer can be thicker and harder than the inner porous layer, thereby increasing the overall hardness of the anodic oxide coating.
    Type: Application
    Filed: February 15, 2019
    Publication date: March 12, 2020
    Inventors: James A. CURRAN, Zechariah D. FEINBERG, Sonja R. POSTAK
  • Publication number: 20200048744
    Abstract: The disclosure provides an aluminum alloy may include iron (Fe) of at least 0.10 wt %, silicon (Si) of at least 0.35 wt %, and magnesium (Mg) of at least 0.45 wt %, manganese (Mn) in amount of at least 0.005 wt %, and additional elements, the remaining wt % being Al and incidental impurities.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 13, 2020
    Inventors: Brian M. Gable, Herng-Jeng Jou, Weiming Huang, Graeme W. Paul, William A. Counts, Eric W. Hamann, Katie L. Sassaman, Abhijeet Misra, Zechariah D. Feinberg, James A. Yurko, Brian P. Demers, Rafael Yu, Anuj Datta Roy, Susannah P. Calvin