Patents by Inventor Zedic Daniel Judd

Zedic Daniel Judd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10760487
    Abstract: An inertial inlet particle separator system for a vehicle engine is provided. A separator assembly and collector assembly are coupled to the scavenge flow path and configured to receive the scavenge air. The collector inlet has a throat defining a cumulative throat area at each position along the throat length from the first throat end to the second throat end. The collector body defines a cross-sectional area associated with each position along the throat length between the first throat end and the second throat end. The collector outlet is coupled to the collector body such that scavenge air flows into the collector inlet, through the collector body, and out through the collector outlet. At a first position between the first throat end and the second throat end, the respective cross-sectional area of the collector body is greater than or equal to the respective cumulative throat area.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: September 1, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Jennifer Ann Reich, Todd A. Kincheloe, Yates Wong, Cristopher Frost
  • Patent number: 10184399
    Abstract: An inertial inlet particle separator system for a vehicle engine is provided. A separator assembly and collector assembly are coupled to the scavenge flow path and configured to receive the scavenge air. The collector inlet has a throat defining a cumulative throat area at each position along the throat length from the first throat end to the second throat end. The collector body defines a cross-sectional area associated with each position along the throat length between the first throat end and the second throat end. The collector outlet is coupled to the collector body such that scavenge air flows into the collector inlet, through the collector body, and out through the collector outlet. At a first position between the first throat end and the second throat end, the respective cross-sectional area of the collector body is greater than or equal to the respective cumulative throat area.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: January 22, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Jennifer Ann Reich, Todd A. Kincheloe, Yates Wong, Cristopher Frost
  • Publication number: 20180347464
    Abstract: An inertial inlet particle separator system for a vehicle engine is provided. A separator assembly and collector assembly are coupled to the scavenge flow path and configured to receive the scavenge air. The collector inlet has a throat defining a cumulative throat area at each position along the throat length from the first throat end to the second throat end. The collector body defines a cross-sectional area associated with each position along the throat length between the first throat end and the second throat end. The collector outlet is coupled to the collector body such that scavenge air flows into the collector inlet, through the collector body, and out through the collector outlet. At a first position between the first throat end and the second throat end, the respective cross-sectional area of the collector body is greater than or equal to the respective cumulative throat area.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Jennifer Ann Reich, Todd A. Kincheloe, Yates Wong, Cristopher Frost
  • Patent number: 10138904
    Abstract: An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, and a splitter. The hub section has a hub outer surface that diverges, relative to the axis of symmetry, to a hub apex. The shroud section has a shroud inner surface that surrounds, and is spaced apart from, at least a portion of the hub section to define a main flow passageway between the hub outer surface and the shroud inner surface. The splitter is disposed downstream of the air inlet and extends into the main flow passageway to divide the main flow passageway into a scavenge flow path and an engine flow path. The hub section and the shroud section are configured such that the cross sectional flow area of the main flow passageway decreases downstream of the air inlet to define a throat section that is disposed upstream of the hub apex.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: November 27, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: John Taylor Pearson, Yogendra Yogi Sheoran, Bruce Dan Bouldin, Zedic Daniel Judd, Eduardo Guerra, David Chou
  • Patent number: 10100734
    Abstract: A multi-channel particle separator includes a plurality of vanes. Each vane is spaced apart from at least one other adjacent vane to define a flow channel, and includes a leading edge, a trailing edge, a first side wall, a second sidewall, and a splitter. The first side wall extends between the leading edge and the trailing edge. The second side wall is spaced apart from the first side wall and extends from the leading edge toward the trailing edge. The splitter may be rotationally coupled to the trailing edge and extend toward the leading edge. The splitter is spaced apart from the first side wall to define a scavenge volume and is rotatable between an extended position and a retracted position. The vanes may also or instead be coupled to a ring-shaped structure.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: October 16, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Yogendra Yogi Sheoran, Jennifer Ann Reich, Bruce Dan Bouldin, Zedic Daniel Judd, John Taylor Pearson, Cristopher Frost, Yates Wong, David Chou, Eduardo Guerra
  • Publication number: 20170370287
    Abstract: An inlet particle separator system includes a shroud section and a hub section that is at least partly surrounded by the shroud section. The hub section is spaced apart from the shroud section. The inlet particle separator system also includes a flow passageway with an air inlet defined between the hub section and the shroud section. The flow passageway branches downstream of the air inlet into a main passage and a pre-cleaner passage. The main passage is defined between the hub section and the shroud section. The pre-cleaner passage includes a pre-cleaner inlet and extends at least partially through the hub section. Furthermore, the system includes a splitter that divides the main passage into scavenge and engine flow paths. The pre-cleaner inlet is partly defined by a first surface of the hub section. The first surface faces substantially in an upstream direction toward the air inlet.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 28, 2017
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: John Taylor Pearson, Zedic Daniel Judd, Yogendra Yogi Sheoran, Bruce Dan Bouldin, David Chou, Eduardo Guerra
  • Publication number: 20170191503
    Abstract: An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, and a splitter. The hub section has a hub outer surface that diverges, relative to the axis of symmetry, to a hub apex. The shroud section has a shroud inner surface that surrounds, and is spaced apart from, at least a portion of the hub section to define a main flow passageway between the hub outer surface and the shroud inner surface. The splitter is disposed downstream of the air inlet and extends into the main flow passageway to divide the main flow passageway into a scavenge flow path and an engine flow path. The hub section and the shroud section are configured such that the cross sectional flow area of the main flow passageway decreases downstream of the air inlet to define a throat section that is disposed upstream of the hub apex.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 6, 2017
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: John Taylor Pearson, Yogendra Yogi Sheoran, Bruce Dan Bouldin, Zedic Daniel Judd, Eduardo Guerra, David Chou
  • Publication number: 20160312698
    Abstract: An inertial inlet particle separator system for a vehicle engine is provided. A separator assembly and collector assembly are coupled to the scavenge flow path and configured to receive the scavenge air. The collector inlet has a throat defining a cumulative throat area at each position along the throat length from the first throat end to the second throat end. The collector body defines a cross-sectional area associated with each position along the throat length between the first throat end and the second throat end. The collector outlet is coupled to the collector body such that scavenge air flows into the collector inlet, through the collector body, and out through the collector outlet. At a first position between the first throat end and the second throat end, the respective cross-sectional area of the collector body is greater than or equal to the respective cumulative throat area.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 27, 2016
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Jennifer Ann Reich, Todd A. Kincheloe, Yates Wong, Cristopher Frost
  • Publication number: 20160245176
    Abstract: A multi-channel particle separator includes a plurality of vanes. Each vane is spaced apart from at least one other adjacent vane to define a flow channel, and includes a leading edge, a trailing edge, a first side wall, a second sidewall, and a splitter. The first side wall extends between the leading edge and the trailing edge. The second side wall is spaced apart from the first side wall and extends from the leading edge toward the trailing edge. The splitter may be rotationally coupled to the trailing edge and extend toward the leading edge. The splitter is spaced apart from the first side wall to define a scavenge volume and is rotatable between an extended position and a retracted position. The vanes may also or instead be coupled to a ring-shaped structure.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 25, 2016
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Yogendra Yogi Sheoran, Jennifer Ann Reich, Bruce Dan Bouldin, Zedic Daniel Judd, John Taylor Pearson, Cristopher Frost, Yates Wong, David Chou, Eduardo Guerra
  • Patent number: 9394827
    Abstract: An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, a splitter, and a hub suction flow passage. The shroud section surrounds at least a portion of the hub section and is spaced apart therefrom to define a main flow passageway that has an air inlet. The splitter is disposed downstream of the air inlet and extends into the passageway to divide the main flow passageway into a scavenge flow path and an engine flow path. The hub suction flow passage has a hub suction inlet port and a hub suction outlet port. The hub suction inlet port extends through the hub section and is in fluid communication with the air inlet. The hub suction outlet port extends through the splitter and is in fluid communication with the scavenge flow path.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: July 19, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Devinder N. Katariya, Eduardo Guerra
  • Patent number: 9314723
    Abstract: An inertial inlet particle separator system for a vehicle engine is provided. A separator assembly and collector assembly are coupled to the scavenge flow path and configured to receive the scavenge air. The collector inlet has a throat defining a cumulative throat area at each position along the throat length from the first throat end to the second throat end. The collector body defines a cross-sectional area associated with each position along the throat length between the first throat end and the second throat end. The collector outlet is coupled to the collector body such that scavenge air flows into the collector inlet, through the collector body, and out through the collector outlet. At a first position between the first throat end and the second throat end, the respective cross-sectional area of the collector body is greater than or equal to the respective cumulative throat area.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: April 19, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Jennifer Ann Reich, Todd A. Kincheloe, Yates Wong
  • Patent number: 9206740
    Abstract: An inlet particle separator system for a vehicle engine includes a separator assembly and a liquid injection system. The separator assembly defines an inlet flow path for receiving inlet air and includes a scavenge flow path and an engine flow path downstream of the inlet flow path. The separator assembly is configured to separate the inlet air into scavenge air and engine air such that the scavenge air is directed from the inlet flow path into the scavenge flow path and the engine air is directed from the inlet flow path into the engine flow path. The liquid injection system is coupled to the separator assembly and configured to introduce a diffused liquid into the inlet air flowing through the separator assembly.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 8, 2015
    Assignee: Honeywell International Inc.
    Inventors: Yates Wong, Eric Blumer, Eduardo Guerra, Yogendra Yogi Sheoran, Zedic Daniel Judd
  • Publication number: 20150040535
    Abstract: An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, a splitter, and a hub suction flow passage. The shroud section surrounds at least a portion of the hub section and is spaced apart therefrom to define a main flow passageway that has an air inlet. The splitter is disposed downstream of the air inlet and extends into the passageway to divide the main flow passageway into a scavenge flow path and an engine flow path. The hub suction flow passage has a hub suction inlet port and a hub suction outlet port. The hub suction inlet port extends through the hub section and is in fluid communication with the air inlet. The hub suction outlet port extends through the splitter and is in fluid communication with the scavenge flow path.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Devinder N. Katariya, Eduardo Guerra
  • Publication number: 20140190347
    Abstract: An inlet particle separator system for a vehicle engine includes a separator assembly and a liquid injection system. The separator assembly defines an inlet flow path for receiving inlet air and includes a scavenge flow path and an engine flow path downstream of the inlet flow path. The separator assembly is configured to separate the inlet air into scavenge air and engine air such that the scavenge air is directed from the inlet flow path into the scavenge flow path and the engine air is directed from the inlet flow path into the engine flow path. The liquid injection system is coupled to the separator assembly and configured to introduce a diffused liquid into the inlet air flowing through the separator assembly.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 10, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Yates Wong, Eric Blumer, Eduardo Guerra, Yogendra Yogi Sheoran, Zedic Daniel Judd
  • Publication number: 20140144123
    Abstract: An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, a splitter section, and an injection opening. The shroud section surrounds at least a portion of the hub section and is spaced apart therefrom to define a passageway having an air inlet. The splitter is disposed downstream of the air inlet and extends into the passageway to divide the passageway into a scavenge flow path and an engine flow path. The injection opening is formed in and extends through the hub section, and is disposed downstream of the air inlet.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Eduardo Guerra, Yates Wong
  • Publication number: 20140076159
    Abstract: An inertial inlet particle separator system for a vehicle engine is provided. A separator assembly and collector assembly are coupled to the scavenge flow path and configured to receive the scavenge air. The collector inlet has a throat defining a cumulative throat area at each position along the throat length from the first throat end to the second throat end. The collector body defines a cross-sectional area associated with each position along the throat length between the first throat end and the second throat end. The collector outlet is coupled to the collector body such that scavenge air flows into the collector inlet, through the collector body, and out through the collector outlet. At a first position between the first throat end and the second throat end, the respective cross-sectional area of the collector body is greater than or equal to the respective cumulative throat area.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 20, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Zedic Daniel Judd, Yogendra Yogi Sheoran, Jennifer Ann Reich, Todd A. Kincheloe, Yates Wong