Patents by Inventor Zefram Marks

Zefram Marks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968772
    Abstract: An optical characterization system is disclosed. The optical characterization system may comprise a synchrotron source, an optical characterization sub-system, and a sensor configured to receive a projected image from a set of imaging optics. The optical characterization sub-system may include at least the set of illumination optics, a set of imaging optics, and a diffractive optical element, a temporal modulator or an optical waveguide configured to match an etendue of a light beam output by the synchrotron source to the set of illumination optics. A method of matching the etendue of a light beam is also disclosed.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: April 23, 2024
    Assignee: KLA Corporation
    Inventors: Zefram Marks, Larissa Juschkin, Daniel C. Wack
  • Publication number: 20220196572
    Abstract: A photomask-inspection system includes a vacuum chamber and a stage, disposed in the vacuum chamber, to support a photomask and to translate the photomask horizontally and vertically. The system also includes an EUV objective, disposed in the vacuum chamber, to collect EUV light from the photomask to inspect the photomask for defects and an optical height sensor, at least partially disposed in the vacuum chamber, to measure heights on a surface of the photomask. The system further includes a stage controller to translate the stage horizontally and vertically in accordance with a focal map for the photomask produced using the measured heights on the surface of the photomask.
    Type: Application
    Filed: June 21, 2021
    Publication date: June 23, 2022
    Inventors: Zefram Marks, Dmitry Skvortsov, Zhengyu Guo, Zhengcheng Lin, Nicolas Steven Juliano, Rui-Fang Shi
  • Patent number: 11268911
    Abstract: Disclosed herein are optical elements and methods for making the same. Such optical elements may comprise a first layer disposed on a substrate, a second layer disposed on the first layer, a terminal layer disposed on the second layer, and a cap layer disposed on the terminal layer. The cap layer may comprise boron, boron nitride, or boron carbide. Such optical elements may be made using a method comprising depositing a first layer using vapor deposition such that the first layer is disposed on a substrate, depositing a second layer using vapor deposition such that the second layer is disposed on the first layer, depositing a terminal layer using vapor deposition such that the terminal layer is disposed on the second layer, and depositing a cap layer comprising boron, boron nitride, or boron carbide using vapor deposition such that the cap layer is disposed on the terminal layer.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: March 8, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Gildardo R Delgado, Shannon B Hill, Zefram Marks
  • Publication number: 20210132506
    Abstract: A system includes optics for ultraviolet light or electrons. The optics are situated in a chamber and include a surface to control a path of photons or electrons. The system also includes a lubricated component that is distinct from the surface and is situated in the chamber. The lubricated component is lubricated with a lubricant that includes an ionic liquid having a cation and an anion, wherein at least one of the cation or the anion is organic.
    Type: Application
    Filed: March 25, 2020
    Publication date: May 6, 2021
    Inventors: Zefram Marks, Gildardo Delgado, Karl Olof Johansson, Brady Clark
  • Publication number: 20200383200
    Abstract: An optical characterization system is disclosed. The optical characterization system may comprise a synchrotron source, an optical characterization sub-system, and a sensor configured to receive a projected image from a set of imaging optics. The optical characterization sub-system may include at least the set of illumination optics, a set of imaging optics, and a diffractive optical element, a temporal modulator or an optical waveguide configured to match an etendue of a light beam output by the synchrotron source to the set of illumination optics. A method of matching the etendue of a light beam is also disclosed.
    Type: Application
    Filed: April 29, 2020
    Publication date: December 3, 2020
    Inventors: Zefram Marks, Larissa Juschkin, Daniel C. Wack
  • Patent number: 10840055
    Abstract: A high-brightness electron beam source is disclosed. The electron beam source may include a broadband illumination source configured to generate broadband illumination. A tunable spectral filter may be configured to filter the broadband illumination to provide filtered illumination having an excitation spectrum. The electron beam source may further include a photocathode configured to emit one or more electron beams in response to the filtered illumination, wherein emission from the photocathode is adjustable based on the excitation spectrum of the filtered illumination from the tunable spectral filter.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: November 17, 2020
    Assignee: KLA Corporation
    Inventors: Gildardo Delgado, Katerina Ioakeimidi, Frances A. Hill, Rudy F. Garcia, Mike Romero, Zefram Marks, Gary V. Lopez Lopez
  • Publication number: 20200279713
    Abstract: The system includes a photocathode electron source, diffractive optical element, and a microlens array to focus the beamlets. A source directs a radiation beam to the diffractive optical element, which produces a beamlet array to be used in combination with a photocathode surface to generate an array of electron beams from the beamlets.
    Type: Application
    Filed: August 21, 2018
    Publication date: September 3, 2020
    Inventors: Gildardo R. Delgado, Katerina Ioakeimidi, Rudy Garcia, Zefram Marks, Gary V. Lopez Lopez, Frances A. Hill, Michael E. Romero
  • Patent number: 10741354
    Abstract: The system includes a photocathode electron source, diffractive optical element, and a microlens array to focus the beamlets. A source directs a radiation beam to the diffractive optical element, which produces a beamlet array to be used in combination with a photocathode surface to generate an array of electron beams from the beamlets.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: August 11, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Gildardo R. Delgado, Katerina Ioakeimidi, Rudy Garcia, Zefram Marks, Gary V. Lopez Lopez, Frances A. Hill, Michael E. Romero
  • Patent number: 10714294
    Abstract: An emitter with a diameter of 100 nm or less is used with a protective cap layer and a diffusion barrier between the emitter and the protective cap layer. The protective cap layer is disposed on the exterior surface of the emitter. The protective cap layer includes molybdenum or iridium. The emitter can generate an electron beam. The emitter can be pulsed.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: July 14, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Frances Hill, Gildardo R. Delgado, Rudy F. Garcia, Gary V. Lopez Lopez, Michael E. Romero, Katerina Ioakeimidi, Zefram Marks
  • Publication number: 20200217804
    Abstract: Disclosed herein are optical elements and methods for making the same. Such optical elements may comprise a first layer disposed on a substrate, a second layer disposed on the first layer, a terminal layer disposed on the second layer, and a cap layer disposed on the terminal layer. The cap layer may comprise boron, boron nitride, or boron carbide. Such optical elements may be made using a method comprising depositing a first layer using vapor deposition such that the first layer is disposed on a substrate, depositing a second layer using vapor deposition such that the second layer is disposed on the first layer, depositing a terminal layer using vapor deposition such that the terminal layer is disposed on the second layer, and depositing a cap layer comprising boron, boron nitride, or boron carbide using vapor deposition such that the cap layer is disposed on the terminal layer.
    Type: Application
    Filed: May 16, 2019
    Publication date: July 9, 2020
    Inventors: Gildardo R. Delgado, Shannon B. Hill, Zefram Marks
  • Publication number: 20190362927
    Abstract: An emitter with a diameter of 100 nm or less is used with a protective cap layer and a diffusion barrier between the emitter and the protective cap layer. The protective cap layer is disposed on the exterior surface of the emitter. The protective cap layer includes molybdenum or iridium. The emitter can generate an electron beam. The emitter can be pulsed.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 28, 2019
    Inventors: Frances Hill, Gildardo R. Delgado, Rudy F. Garcia, Gary V. Lopez Lopez, Michael E. Romero, Katerina Ioakeimidi, Zefram Marks
  • Publication number: 20190295804
    Abstract: A high-brightness electron beam source is disclosed. The electron beam source may include a broadband illumination source configured to generate broadband illumination. A tunable spectral filter may be configured to filter the broadband illumination to provide filtered illumination having an excitation spectrum. The electron beam source may further include a photocathode configured to emit one or more electron beams in response to the filtered illumination, wherein emission from the photocathode is adjustable based on the excitation spectrum of the filtered illumination from the tunable spectral filter.
    Type: Application
    Filed: January 16, 2019
    Publication date: September 26, 2019
    Inventors: Gildardo Delgado, Katerina Ioakeimidi, Frances A. Hill, Rudy F. Garcia, Mike Romero, Zefram Marks, Gary V. Lopez
  • Publication number: 20180066132
    Abstract: The disclosed technology is directed to conductive polymeric compositions, and methods of manufacturing and using conductive polymer compositions. Specifically, the disclosed technology includes customizing conductive compositions, including conductive polymers and nanogels, with a range of physical and mechanical properties tailored to various applications, including drug delivery, contrast for medical imaging (e.g., optical coherence tomography electrochromics), smart lenses, etc.
    Type: Application
    Filed: March 31, 2016
    Publication date: March 8, 2018
    Inventors: Devatha P. Nair, Malik Y. Kahook, Zefram Marks, Sean Shaheen, Robert R. McLeod