Patents by Inventor Zehua Huang

Zehua Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965765
    Abstract: The embodiments of the present disclosure provide a method for predicting gas transmission loss of smart gas, implemented by a smart gas equipment management platform of an Internet of Things (IoT) system for predicting gas transmission loss of smart gas, comprising: obtaining gas flow data, gas pressure data, and ambient temperature data of a plurality of time points respectively based on gas metering devices, pressure detection devices, and temperature monitoring devices at a plurality of positions of a gas pipeline network; predicting a gas metering error based on the ambient temperature data; determining whether gas loss is abnormal loss based on the gas flow data, the gas pressure data, and the gas metering error; and in response to a determination that the gas loss is the abnormal loss, sending a warning notice.
    Type: Grant
    Filed: March 15, 2023
    Date of Patent: April 23, 2024
    Assignee: CHENGDU QINCHUAN IOT TECHNOLOGY CO., LTD.
    Inventors: Zehua Shao, Yaqiang Quan, Xiaojun Wei, Guanghua Huang, Yuefei Wu
  • Publication number: 20240116523
    Abstract: A redundant hardware and software architecture can be designed to enable vehicles to be operated in an autonomous mode while improving the reliability and/or safety of such vehicles. A system for redundant architecture can include a set of at least two redundant sensors coupled to a vehicle and configured to provide timestamped sensor data to each of a plurality of computing unit (CU) computers. The CU computers can process the sensor data simultaneously based on at least a time value indicative of an absolute time or a relative time and based on the timestamped sensor data. The CU computers provide to a vehicle control unit (VCU) computer at least two sets of outputs configured to instruct a plurality of devices in a vehicle and cause the vehicle to be driven.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: Frederic ROCHA, Zehua HUANG, Xiaoling HAN, Ruiliang ZHANG, Esayas NAIZGHI, Changyi ZHAO
  • Publication number: 20240118150
    Abstract: The present disclosure provides a method for testing an internal force increment of an arch bridge suspender by inertial measurement, including the following steps: (1) selecting a suspender to be tested with internal force increment, and mounting an acceleration sensing device or a speed sensing device at a lower edge of the suspender to be tested; (2) setting an appropriate sampling frequency and collecting signals; (3) processing information data collected in step (2) by using Formulas; and (4) recording a result of the information data processing and obtaining the internal force increment of the suspender. The method can obtain the internal force increment of the suspender by collecting acceleration or speed signals of the lower edge of the suspender and performing calculation from the signals. This method has the advantages of simple and convenient testing, high replicability and low test cost.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 11, 2024
    Inventors: Hua Wang, Longlin Wang, Tianzhi Hao, Zehua Xie, Mengsheng Yu, Xiaoli Zhuo, Yuhou Yang, Jiejun Ning, Xirui Wang, Xi Peng, Kainan Huang, Junhong Wu
  • Publication number: 20240110674
    Abstract: The present disclosure provides a method, an Internet of Things (IoT) system, and a medium for presetting emergency devices of smart gas. The method comprises determining gas supply and demand features based on node data and downstream user features of a gas pipeline network. The method also comprises determining a plurality of gas emergency regions based on the gas supply and demand features, and continuously obtaining location data and carrying data of a plurality of emergency devices. The method further comprises determining a dynamic deployment scheme for the plurality of emergency devices based on the plurality of gas emergency regions, the location data, and the carrying data, the dynamic deployment scheme including locations of the plurality of emergency devices of at least one time point, generating a movement instruction based on the dynamic deployment scheme, and sending the movement instruction to the plurality of emergency devices.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 4, 2024
    Applicant: CHENGDU QINCHUAN IOT TECHNOLOGY CO., LTD.
    Inventors: Zehua SHAO, Yaqiang QUAN, Quan WANG, Guanghua HUANG
  • Publication number: 20240107175
    Abstract: Disclosed are devices, systems and methods for capturing an image. In one aspect an electronic camera apparatus includes an image sensor with a plurality of pixel regions. The apparatus further includes an exposure controller. The exposure controller determines, for each of the plurality of pixel regions, a corresponding exposure duration and a corresponding exposure start time. Each pixel region begins to integrate incident light starting at the corresponding exposure start time and continues to integrate light for the corresponding exposure duration. In some example embodiments, at least two of the corresponding exposure durations or at least two of the corresponding exposure start times are different in the image.
    Type: Application
    Filed: December 8, 2023
    Publication date: March 28, 2024
    Inventors: Ke XU, Xue MEI, Zehua HUANG
  • Patent number: 11932238
    Abstract: The disclosed technology enables automated parking of an autonomous vehicle. An example method of performing automated parking for a vehicle comprises obtaining, from a plurality of global positioning system (GPS) devices located on or in an autonomous vehicle, a first set of location information that describes locations of multiple points on the autonomous vehicle, where the first set of location information are associated with a first position of the autonomous vehicle, determining, based on the first set of location information and a location of the parking area, a trajectory information that describes a trajectory for the autonomous vehicle to be driven from the first position of the autonomous vehicle to a parking area, and causing the autonomous vehicle to be driven along the trajectory to the parking area by causing operation of one or more devices located in the autonomous vehicle based on at least the trajectory information.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: March 19, 2024
    Assignee: TUSIMPLE, INC.
    Inventors: Kun Zhang, Xiaoling Han, Zehua Huang, Charles A. Price
  • Patent number: 11922808
    Abstract: Disclosed are devices, systems and methods for using a rotating camera for vehicular operation. One example of a method for improving driving includes determining, by a processor in the vehicle, that a trigger has activated, orienting, based on the determining, a single rotating camera towards a direction of interest, and activating a recording functionality of the single rotating camera, where the vehicle comprises the single rotating camera and one or more fixed cameras, and where the single rotating camera provides a redundant functionality for, and consumes less power than, the one or more fixed cameras.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: March 5, 2024
    Assignee: TUSIMPLE, INC.
    Inventors: Zhujia Shi, Charles A. Price, Zehua Huang, Xiaodi Hou, Xiaoling Han, Todd Skinner
  • Patent number: 11917010
    Abstract: The embodiments of the present disclosure provide a method and an Internet of Things (IoT) system for gas purification management in a storage and distribution station for smart gas. The method is implemented based on the IoT system for gas purification management in the storage and distribution station for smart gas. The IoT system includes a smart gas user platform, a smart gas service platform, a smart gas device management platform, a smart gas sensor network platform, and a smart gas object platform. The method is executed by the smart gas device management platform. The method includes: obtaining a gas quality condition parameter of a raw gas, and the gas quality condition parameter being obtained based on the storage and distribution station; determining, based on the gas quality condition parameter, an operation parameter in a purification process, the operation parameter being used for a purification operation of the raw gas.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: February 27, 2024
    Assignee: CHENGDU QINCHUAN IOT TECHNOLOGY CO., LTD.
    Inventors: Zehua Shao, Junyan Zhou, Guanghua Huang, Lei Zhang, Xiaojun Wei
  • Publication number: 20240046654
    Abstract: Devices, systems and methods for fusing scenes from real-time image feeds from on-vehicle cameras in autonomous vehicles to reduce redundancy of the information processed to enable real-time autonomous operation are described. One example of a method for improving perception in an autonomous vehicle includes receiving a plurality of cropped images, wherein each of the plurality of cropped images comprises one or more bounding boxes that correspond to one or more objects in a corresponding cropped image; identifying, based on the metadata in the plurality of cropped images, a first bounding box in a first cropped image and a second bounding box in a second cropped image, wherein the first and second bounding boxes correspond to a common object; and fusing the metadata corresponding to the common object from the first cropped image and the second cropped image to generate an output result for the common object.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Yijie WANG, Siyuan LIU, Lingting GE, Zehua HUANG
  • Patent number: 11891075
    Abstract: A redundant hardware and software architecture can be designed to enable vehicles to be operated in an autonomous mode while improving the reliability and/or safety of such vehicles. A system for redundant architecture can include a set of at least two redundant sensors coupled to a vehicle and configured to provide timestamped sensor data to each of a plurality of computing unit (CU) computers. The CU computers can process the sensor data simultaneously based on at least a time value indicative of an absolute time or a relative time and based on the timestamped sensor data. The CU computers provide to a vehicle control unit (VCU) computer at least two sets of outputs configured to instruct a plurality of devices in a vehicle and cause the vehicle to be driven.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 6, 2024
    Assignee: TUSIMPLE, INC.
    Inventors: Frederic Rocha, Zehua Huang, Xiaoling Han, Ruiliang Zhang, Esayas Naizghi, Changyi Zhao
  • Publication number: 20240019267
    Abstract: Technique for performing camera calibration on a vehicle is disclosed. A method of performing camera calibration includes emitting, by a laser emitter located on a vehicle and pointed towards a road, a first laser pulse group towards a first location on a road and a second laser pulse group towards a second location on the road, where each laser pulse group includes one or more laser spots. For each laser pulse group: a first set of distances are calculated from a location of a laser receiver to the one or more laser spots, and a second set of distances are determined from an image obtained from a camera, where the second set of distances are from a location of the camera to the one or more laser spots. The method also includes determining two camera calibration parameters of the camera by solving two equations.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 18, 2024
    Inventors: Xiaoling Han, Zehua Huang
  • Patent number: 11877066
    Abstract: Disclosed are devices, systems and methods for capturing an image. In one aspect an electronic camera apparatus includes an image sensor with a plurality of pixel regions. The apparatus further includes an exposure controller. The exposure controller determines, for each of the plurality of pixel regions, a corresponding exposure duration and a corresponding exposure start time. Each pixel region begins to integrate incident light starting at the corresponding exposure start time and continues to integrate light for the corresponding exposure duration. In some example embodiments, at least two of the corresponding exposure durations or at least two of the corresponding exposure start times are different in the image.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: January 16, 2024
    Assignee: TUSIMPLE, INC.
    Inventors: Ke Xu, Xue Mei, Zehua Huang
  • Patent number: 11865967
    Abstract: A system comprises a headlight mounted on an autonomous vehicle. The headlight is configured to illuminate at least a portion of a road the autonomous vehicle is on. The system further comprises a control device associated with the autonomous vehicle. The processor obtains information about an environment around the autonomous vehicle. The processor determines that at least a portion of the road should be illuminated if the information indicates that an illumination level of the portion of the road is less than a threshold illumination level. The processor adjusts the headlight to illuminate at least the portion of the road in response to determining that at least the portion of the road should be illuminated.
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: January 9, 2024
    Assignee: TUSIMPLE, INC.
    Inventors: Yu-Ju Hsu, Xiaoling Han, Yijing Li, Zehua Huang, Lingting Ge, Panqu Wang, Shuhan Yang
  • Publication number: 20230391250
    Abstract: A system comprises a headlight mounted on an autonomous vehicle. The headlight is configured to illuminate at least a portion of a road the autonomous vehicle is on. The system further comprises a control device associated with the autonomous vehicle. The processor obtains information about an environment around the autonomous vehicle. The processor determines that at least a portion of the road should be illuminated if the information indicates that an illumination level of the portion of the road is less than a threshold illumination level. The processor adjusts the headlight to illuminate at least the portion of the road in response to determining that at least the portion of the road should be illuminated.
    Type: Application
    Filed: August 3, 2023
    Publication date: December 7, 2023
    Inventors: Yu-Ju Hsu, Xiaoling Han, Yijing Li, Zehua Huang, Lingting Ge, Panqu Wang, Shuhan Yang
  • Patent number: 11823460
    Abstract: Devices, systems and methods for fusing scenes from real-time image feeds from on-vehicle cameras in autonomous vehicles to reduce redundancy of the information processed to enable real-time autonomous operation are described. One example of a method for improving perception in an autonomous vehicle includes receiving a plurality of cropped images, wherein each of the plurality of cropped images comprises one or more bounding boxes that correspond to one or more objects in a corresponding cropped image; identifying, based on the metadata in the plurality of cropped images, a first bounding box in a first cropped image and a second bounding box in a second cropped image, wherein the first and second bounding boxes correspond to a common object; and fusing the metadata corresponding to the common object from the first cropped image and the second cropped image to generate an output result for the common object.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 21, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Yijie Wang, Siyuan Liu, Lingting Ge, Zehua Huang
  • Publication number: 20230363105
    Abstract: Techniques are described for managing temperature in an autonomous vehicle. An exemplary method comprises performing autonomous driving operations that operate the autonomous vehicle in an autonomous mode, receiving one or more messages from a temperature sensor associated with an electrical device located on or in the autonomous vehicle while the autonomous vehicle is operated in the autonomous mode, determining a cooling technique to reduce the temperature of electrical device, and performing the cooling technique.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 9, 2023
    Inventors: Kaixin ZHENG, Xiaoling HAN, Zehua HUANG, Todd SKINNER
  • Publication number: 20230347914
    Abstract: Techniques are described to enable a vehicle, such as an autonomous vehicle, to steer and/or apply brakes on a road when a failure condition occurs. An example method for autonomous driving operation includes receiving a reduced set of location information that describes a location of the autonomous vehicle on a road; receiving a reduced set of trajectory information where the autonomous vehicle is expected to be driven; determining a driving path information where the autonomous vehicle is expected to be driven; and in response to determining an occurrence of a fault condition: sending a first instruction to cause the autonomous vehicle to steer the autonomous vehicle using at least the driving path information and the reduced set of location information, and sending a second instruction to cause the autonomous vehicle to apply brakes.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 2, 2023
    Inventors: Mohamed Hassan Ahmed Hassan WAHBA, Yu-Ju HSU, Zehua HUANG, Xiaoling HAN
  • Publication number: 20230350399
    Abstract: Disclosed are devices, systems and methods for the operational testing on autonomous vehicles. One exemplary method includes configuring a primary vehicular model with an algorithm, calculating one or more trajectories for each of one or more secondary vehicular models that exclude the algorithm, configuring the one or more secondary vehicular models with a corresponding trajectory of the one or more trajectories, generating an updated algorithm based on running a simulation of the primary vehicular model interacting with the one or more secondary vehicular models that conform to the corresponding trajectory in the simulation, and integrating the updated algorithm into an algorithmic unit of the autonomous vehicle.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 2, 2023
    Inventors: Zehua HUANG, Yixin YANG
  • Publication number: 20230331200
    Abstract: Described are devices, systems and methods for managing a supplemental brake control system in autonomous vehicles. In some aspects, a supplemental brake management system includes brake control hardware and software that operates with a sensing mechanism for determining the brake operational status and a control mechanism for activating the supplemental brake control in an autonomous vehicle, which can be implemented in addition to the vehicle's primary brake control system.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Inventors: Xiaoling HAN, Kun ZHANG, Yu-Ju HSU, Frederic ROCHA, Zehua HUANG, Charles A. PRICE
  • Publication number: 20230326168
    Abstract: Image processing techniques are described to obtain an image from a camera located on a vehicle while the vehicle is being driven, cropping a portion of the obtained image corresponding to a region of interest, detecting an object in the cropped portion, adding a bounding box around the detected object, determining position(s) of reference point(s) on the bounding box, and determining a location of the detected object in a spatial region where the vehicle is being driven based on the determined one or more positions of the second set of one or more reference points on the bounding box.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Siyuan LIU, Lingting GE, Chenzhe QIAN, Zehua HUANG, Xiaodi HOU