Patents by Inventor Zeiter Farah

Zeiter Farah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230256669
    Abstract: Methods and systems for additive manufacturing are disclosed, the methods and systems comprising reducing the amount of support material used, by one or more methods, including inclusion of part material voxels and air voxels within the support regions, using a lattice of part material within support regions, printing one or more skin layers and boundary layers to support the part geometry and surface, and printing support layers in a drafted manner to reduce support material.
    Type: Application
    Filed: July 15, 2021
    Publication date: August 17, 2023
    Inventors: Zeiter Farah, J. Samuel Batchelder, Manish Boorugu, Brian Mullen, Alex J. Kossett
  • Patent number: 11446862
    Abstract: A method of operating a selective deposition-based additive manufacturing system capable of building a three-dimensional (3D) part includes developing a first layer using at least one electrostatographic engine, conveying the first layer from the at least one EP engine to a transfusion assembly, determining an anticipated transfusion overlay error for the first layer, determining whether the anticipated transfusion overlay error exceeds an overlay error specification, discarding the first layer after determining that the anticipated transfusion overlay error exceeds the overlay error specification, developing a successive layer using the at least one electrostatographic engine, conveying the successive layer from the at least one electrostatographic engine to the transfusion assembly, and transfusing the successive layer on a part build surface using the transfusion assembly to build the 3D part in a layer-by-layer manner on a part build platform.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: September 20, 2022
    Assignee: Evolve Additive Solutions, Inc.
    Inventors: Zeiter Farah, Andrew Rice
  • Publication number: 20220234299
    Abstract: A method for making a three-dimensional (3D) part with an electrostatographic based additive manufacturing system includes establishing first and second control parameter profiles, establishing a transfusion sequence, and transfusing n+m layers on a bonding region of previously accumulated layers of the 3D part according to the transfusion sequence. The first and second control parameter profiles each include a different combination of temperature and pressure parameters usable to transfuse a single layer of the 3D part. The transfusion sequence specifies the use of each of the first and second control parameter profiles in a specified order. A total thickness of the n+m layers is less than a thermal diffusion depth. The transfusion step includes transfusing n layers according to the first control parameter profile, and, after transfusing then layers, transfusing m layers according to the second control parameter profile.
    Type: Application
    Filed: May 15, 2020
    Publication date: July 28, 2022
    Inventors: J. Samuel Batchelder, Manish Boorugu, Zeiter Farah
  • Patent number: 10996602
    Abstract: A method of operating a selective deposition based additive manufacturing system capable of producing a three-dimensional (3D) part includes developing a first layer using at least one electrostatography engine, transfusing the first layer on a part build surface using a transfusion assembly to build the 3D part in a layer-by-layer manner on a part build platform such that a portion of the first layer further builds a fiducial structure in a layer-by-layer manner on the part build platform, measuring a height of the fiducial structure, computing an error between the measured height of the fiducial structure and a target height, adjusting a parameter of the at least one electrostatography engine as a function of the error, developing a second layer using the at least one electrostatography engine in accordance with the adjusted parameter, and transfusing the second layer using the transfusion assembly to further build the 3D part.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: May 4, 2021
    Assignee: Evolve Additive Solutions, Inc.
    Inventors: Andrew Rice, Zeiter Farah
  • Publication number: 20200338814
    Abstract: A method of operating a selective deposition-based additive manufacturing system capable of building a three-dimensional (3D) part includes developing a first layer using at least one electrostatographic engine, conveying the first layer from the at least one EP engine to a transfusion assembly, determining an anticipated transfusion overlay error for the first layer, determining whether the anticipated transfusion overlay error exceeds an overlay error specification, discarding the first layer after determining that the anticipated transfusion overlay error exceeds the overlay error specification, developing a successive layer using the at least one electrostatographic engine, conveying the successive layer from the at least one electrostatographic engine to the transfusion assembly, and transfusing the successive layer on a part build surface using the transfusion assembly to build the 3D part in a layer-by-layer manner on a part build platform.
    Type: Application
    Filed: December 28, 2017
    Publication date: October 29, 2020
    Inventors: Zeiter Farah, Andrew Rice
  • Patent number: 10518486
    Abstract: A method of printing a part using an additive manufacturing system includes identifying a part or parts to print and orienting a digital representation of the part(s) in a build volume. A digital representation of porous support structures for the part(s) is generated to form a digital representation of a part block of the part(s) to be printed. In the part block, a porosity of the support structure increases as a distance from an outer surface of the part increases within the print volume. The digital representation of the part block, including the part(s) and porous support structures, is sliced for printing.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: December 31, 2019
    Assignee: Evolve Additive Solutions, Inc.
    Inventors: Blake Zachary Courter, Zeiter Farah, Steven A. Chillscyzn, J. Samuel Batchelder
  • Publication number: 20190204769
    Abstract: A method of operating a selective deposition based additive manufacturing system capable of producing a three-dimensional (3D) part includes developing a first layer using at least one electrostatography engine, transfusing the first layer on a part build surface using a transfusion assembly to build the 3D part in a layer-by-layer manner on a part build platform such that a portion of the first layer further builds a fiducial structure in a layer-by-layer manner on the part build platform, measuring a height of the fiducial structure, computing an error between the measured height of the fiducial structure and a target height, adjusting a parameter of the at least one electrostatography engine as a function of the error, developing a second layer using the at least one electrostatography engine in accordance with the adjusted parameter, and transfusing the second layer using the transfusion assembly to further build the 3D part.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 4, 2019
    Inventors: Andrew Rice, Zeiter Farah
  • Publication number: 20180370155
    Abstract: A method of printing a part using an additive manufacturing system includes identifying a part or parts to print and orienting a digital representation of the part(s) in a build volume. A digital representation of porous support structures for the part(s) is generated to form a digital representation of a part block of the part(s) to be printed. In the part block, a porosity of the support structure increases as a distance from an outer surface of the part increases within the print volume. The digital representation of the part block, including the part(s) and porous support structures, is sliced for printing.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 27, 2018
    Inventors: Blake Zachary Courter, Zeiter Farah, Steven A. Chillscyzn, J. Samuel Batchelder
  • Patent number: 9688027
    Abstract: A method and system for printing a three-dimensional part, which includes rotating a transfer belt with a developed layer, scanning the developed layer on the rotating transfer belt, pressing the developed layer into contact with an intermediate build surface of the three-dimensional part retained on a moveable build platform, scanning the pressed layer on the three-dimensional part, comparing the scanned layers to detect an overlay error, and adjusting a position of the moveable build platform relative to the transfer belt to reduce the overlay error for a subsequent developed layer.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: June 27, 2017
    Assignee: Stratasys, Inc.
    Inventors: J. Samuel Batchelder, Zeiter Farah
  • Publication number: 20150273767
    Abstract: A method and system for printing a three-dimensional part, which includes rotating a transfer belt with a developed layer, scanning the developed layer on the rotating transfer belt, pressing the developed layer into contact with an intermediate build surface of the three-dimensional part retained on a moveable build platform, scanning the pressed layer on the three-dimensional part, comparing the scanned layers to detect an overlay error, and adjusting a position of the moveable build platform relative to the transfer belt to reduce the overlay error for a subsequent developed layer.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Inventors: J. Samuel Batchelder, Zeiter Farah