Patents by Inventor Zejing Wang

Zejing Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128867
    Abstract: A system includes: 1) a battery configured to provide an input voltage (VIN); 2) switching converter circuitry coupled to the battery, wherein the switching converter circuitry includes a power switch; 3) a load coupled to an output of the switching converter circuitry; and 4) a control circuit coupled to the power switch. The control circuit includes: 1) a switch driver circuit coupled to the power switch; 2) a summing comparator circuit configured to output a first control signal that indicates when to turn the power switch on; and 3) an analog on-time extension circuit configured to extend an on-time of the power switch by gating a second control signal with the first control signal, wherein the second control signal indicates when to turn the power switch off.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Inventors: Zejing Wang, Zhujun Li, Songming Zhou, Yu Wang
  • Publication number: 20240080564
    Abstract: Electronic devices, methods, and program storage devices for achieving smooth zooming operations during video capture are disclosed. In particular, smooth zooming may be desirable during video capture operations that involve a single image capture device and/or transitioning between two or more distinct image capture devices, e.g., having different optical and/or zooming properties, during the video capture. When video zooming is done abruptly, it can lead to an unpleasant user experience. The techniques described herein to improve the smoothness of zooming operations include: the use of longer zoom “ramps” for image capture devices; the “early” transitioning between image capture devices during video capture; and the performance of additional “digital zoom smoothing-aware” video image stabilization operations. The embodiments described herein also provide for a more consistent user experience between video streaming (i.e., “preview”) modes and the recorded (i.e.
    Type: Application
    Filed: February 23, 2023
    Publication date: March 7, 2024
    Inventors: Buyue Zhang, Walker J. Eagleston, Avijit S. Wasu, Jeffrey A. Brasket, Florian Ciurea, Zejing Wang, Sean Z. Amadio, Julio C. Hernandez Zaragoza, Tao Zhang
  • Patent number: 11916479
    Abstract: A system includes: 1) a battery configured to provide an input voltage (VIN); 2) switching converter circuitry coupled to the battery, wherein the switching converter circuitry includes a power switch; 3) a load coupled to an output of the switching converter circuitry; and 4) a control circuit coupled to the power switch. The control circuit includes: 1) a switch driver circuit coupled to the power switch; 2) a summing comparator circuit configured to output a first control signal that indicates when to turn the power switch on; and 3) an analog on-time extension circuit configured to extend an on-time of the power switch by gating a second control signal with the first control signal, wherein the second control signal indicates when to turn the power switch off.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: February 27, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Zejing Wang, Zhujun Li, Songming Zhou, Yu Wang
  • Publication number: 20230208293
    Abstract: A system includes: 1) a battery configured to provide an input voltage (VIN); 2) switching converter circuitry coupled to the battery, wherein the switching converter circuitry includes a power switch; 3) a load coupled to an output of the switching converter circuitry; and 4) a control circuit coupled to the power switch. The control circuit includes: 1) a switch driver circuit coupled to the power switch; 2) a summing comparator circuit configured to output a first control signal that indicates when to turn the power switch on; and 3) an analog on-time extension circuit configured to extend an on-time of the power switch by gating a second control signal with the first control signal, wherein the second control signal indicates when to turn the power switch off.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 29, 2023
    Inventors: Zejing Wang, Zhujun Li, Songming Zhou, Yu Wang
  • Patent number: 11557969
    Abstract: A system includes: 1) a battery configured to provide an input voltage (VIN); 2) switching converter circuitry coupled to the battery, wherein the switching converter circuitry includes a power switch; 3) a load coupled to an output of the switching converter circuitry; and 4) a control circuit coupled to the power switch. The control circuit includes: 1) a switch driver circuit coupled to the power switch; 2) a summing comparator circuit configured to output a first control signal that indicates when to turn the power switch on; and 3) an analog on-time extension circuit configured to extend an on-time of the power switch by gating a second control signal with the first control signal, wherein the second control signal indicates when to turn the power switch off.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: January 17, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Zejing Wang, Zhujun Li, Songming Zhou, Yu Wang
  • Publication number: 20220394180
    Abstract: Devices, methods, and non-transitory program storage devices are disclosed to provide techniques for distortion compensation in images that are subject to video image stabilization (VIS), e.g., electronic image stabilization (EIS). In some embodiments, the techniques comprise: obtaining a first image captured by a first image capture device; determining a first set of image parameters configured to apply a first distortion operation (e.g., an un-distortion operation) to the first image; determining a second set of image parameters configured to apply a first stabilization operation to a first version of the first image that has already had the first distortion operation applied; determining a third set of image parameters configured to apply a second distortion operation (e.g.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 8, 2022
    Inventors: Zejing Wang, Florian Ciurea, Benjamin A. Darling
  • Publication number: 20220112274
    Abstract: Methods for using anti-LIV1 antibodies and antibody-drug conjugates, including anti-LIV1 antibody-drug conjugates, to inhibit proliferation of a cell, as well as for the treatment of cancers, such as, e.g., prostate cancer and melanoma, are provided.
    Type: Application
    Filed: September 27, 2021
    Publication date: April 14, 2022
    Inventors: Matt ONSUM, Hailing LU, Zejing WANG
  • Publication number: 20210313883
    Abstract: A system includes: 1) a battery configured to provide an input voltage (VIN); 2) switching converter circuitry coupled to the battery, wherein the switching converter circuitry includes a power switch; 3) a load coupled to an output of the switching converter circuitry; and 4) a control circuit coupled to the power switch. The control circuit includes: 1) a switch driver circuit coupled to the power switch; 2) a summing comparator circuit configured to output a first control signal that indicates when to turn the power switch on; and 3) an analog on-time extension circuit configured to extend an on-time of the power switch by gating a second control signal with the first control signal, wherein the second control signal indicates when to turn the power switch off.
    Type: Application
    Filed: September 2, 2020
    Publication date: October 7, 2021
    Inventors: Zejing Wang, Zhujun Li, Songming Zhou, Yu Wang
  • Publication number: 20210228676
    Abstract: The present disclosure relates, in general, to methods for treating LIV-1-expressing cancers comprising administering an anti-LIV-1 antibody drug conjugate (LIV-1-ADC) in combination with a PD-1 antagonist, such as an anti-PD-1 antibody.
    Type: Application
    Filed: December 9, 2020
    Publication date: July 29, 2021
    Inventors: Zejing Wang, Nicholas Choong, Django Sussman
  • Patent number: 10969808
    Abstract: A switching converter controller includes an on-time timer circuit coupled to a switch driver circuit. The on-time timer circuit includes an up/down counter with a clock input node. The on-time timer circuit also includes a latch with an input coupled to an external clock signal and with an output coupled to the clock input node. The on-time timer circuit also includes an on-time capacitor array with a control terminal coupled an output of the up/down counter.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 6, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Zejing Wang, Zhujun Li
  • Publication number: 20200310475
    Abstract: A switching converter controller includes an on-time timer circuit coupled to a switch driver circuit. The on-time timer circuit includes an up/down counter with a clock input node. The on-time timer circuit also includes a latch with an input coupled to an external clock signal and with an output coupled to the clock input node. The on-time timer circuit also includes an on-time capacitor array with a control terminal coupled an output of the up/down counter.
    Type: Application
    Filed: November 15, 2019
    Publication date: October 1, 2020
    Inventors: Zejing WANG, Zhujun LI
  • Patent number: 10594945
    Abstract: A sensor is configured to acquire a light field by imaging a scene. A processor is configured to determine four-dimensional (4D) coordinates of points in a light field and generate dollied coordinates from the 4D coordinates based on a dolly transform and a dolly parameter. The processor is also configured to project rays associated with the dollied coordinates from the light field onto corresponding points in an output raster. In some cases, the processor applies an aperture function to filter the rays in the coordinate system of the dollied coordinates. The aperture function has a first value in a first region of an aperture plane and the aperture value has a second value in a second region of the aperture plane. Rays passing through the first region are accepted by the aperture function and rays passing through the second region are rejected.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: March 17, 2020
    Assignee: GOOGLE LLC
    Inventors: Zejing Wang, Joel Merritt
  • Patent number: 10354399
    Abstract: Dense light-field data can be generated from image data that does not include light-field data, or from image data that includes sparse light-field data. In at least one embodiment, the source light-field data may include one or more sub-aperture images that may be used to reconstruct the light-field in denser form. In other embodiments, the source data can take other forms. Examples include data derived from or ancillary to a set of sub-aperture images, synthetic data, or captured image data that does not include full light-field data. Interpolation, back-projection, and/or other techniques are used in connection with source sub-aperture images or their equivalents, to generate dense light-field data.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: July 16, 2019
    Assignee: GOOGLE LLC
    Inventors: Zejing Wang, Thomas Nonn
  • Publication number: 20180342075
    Abstract: Dense light-field data can be generated from image data that does not include light-field data, or from image data that includes sparse light-field data. In at least one embodiment, the source light-field data may include one or more sub-aperture images that may be used to reconstruct the light-field in denser form. In other embodiments, the source data can take other forms. Examples include data derived from or ancillary to a set of sub-aperture images, synthetic data, or captured image data that does not include full light-field data. Interpolation, back-projection, and/or other techniques are used in connection with source sub-aperture images or their equivalents, to generate dense light-field data.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 29, 2018
    Inventors: Zejing Wang, Thomas Nonn
  • Publication number: 20180288335
    Abstract: A sensor is configured to acquire a light field by imaging a scene. A processor is configured to determine four-dimensional (4D) coordinates of points in a light field and generate dollied coordinates from the 4D coordinates based on a dolly transform and a dolly parameter. The processor is also configured to project rays associated with the dollied coordinates from the light field onto corresponding points in an output raster. In some cases, the processor applies an aperture function to filter the rays in the coordinate system of the dollied coordinates. The aperture function has a first value in a first region of an aperture plane and the aperture value has a second value in a second region of the aperture plane. Rays passing through the first region are accepted by the aperture function and rays passing through the second region are rejected.
    Type: Application
    Filed: April 3, 2018
    Publication date: October 4, 2018
    Inventors: Zejing WANG, Joel MERRITT
  • Patent number: 9900510
    Abstract: Motion blur may be applied to a light-field image. The light-field image may be captured with a light-field camera having a main lens, an image sensor, and a plurality of microlenses positioned between the main lens and the image sensor. The light-field image may have a plurality of lenslet images, each of which corresponds to one microlens of the microlens array. The light-field image may be used to generate a mosaic of subaperture images, each of which has pixels from the same location on each of the lenslet images. Motion vectors may be computed to indicate motion occurring within at least a primary subaperture image of the mosaic. The motion vectors may be used to carry out shutter reconstruction of the mosaic to generate a mosaic of blurred subaperture images, which may then be used to generate a motion-blurred light-field image.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Lytro, Inc.
    Inventors: Jon Karafin, Thomas Nonn, Gang Pan, Zejing Wang
  • Publication number: 20170332000
    Abstract: A high dynamic range light-field image may be captured through the use of a light-field imaging system. In a first sensor of the light-field imaging system, first image data may be captured at a first exposure level. In the first sensor or in a second sensor of the light-field imaging system, second imaging data may be captured at a second exposure level greater than the first exposure level. In a data store, the first image data and the second image data may be received. In a processor, the first image data and the second image data may be combined to generate a light-field image with high dynamic range.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 16, 2017
    Inventors: Zejing Wang, Kurt Akeley, Colvin Pitts, Jon Karafin
  • Publication number: 20170059305
    Abstract: A depth map may be generated in conjunction with generation of a digital image such as a light-field image. A light pattern source may be used to project a light pattern into a scene with one or more objects. A camera may be used to capture first light and second light reflected from the one or more objects. The first light may be a reflection of light originating from one or more other light sources independent of the light pattern source. The second light may be a reflection of the light pattern from the one or more objects. In a processor, at least the first light may be used to generate an image such as a light-field image. Further, in the processor, at least the second light may be used to generate a depth map indicative of distance between the one or more objects and the camera.
    Type: Application
    Filed: August 25, 2015
    Publication date: March 2, 2017
    Inventors: Thomas Nonn, Zejing Wang
  • Patent number: 9420276
    Abstract: Microlens positions for a light-field capture device may be calibrated. A calibration light-field image may be captured, with a microlens portion corresponding to each microlens of the light-field capture device. Interstitial spaces between the microlens portions may be identified and used to locate one or more center locations of the microlens portions. The center locations may be used to generate a model that indicates the microlens positions. Additionally or alternatively, the calibration light field image may be used to select one or more contour samples from among multiple contour samples of the microlens portions. The contour sample may be fitted to a circle centered at a center location of a microlens portion to identify the center location, which may then be used to generate a model that indicates the microlens positions. Multiple iterations may be used to enhance the accuracy of the models.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: August 16, 2016
    Assignee: Lytro, Inc.
    Inventors: Chia-Kai Liang, Zejing Wang
  • Publication number: 20160029017
    Abstract: Microlens positions for a light-field capture device may be calibrated. A calibration light-field image may be captured, with a microlens portion corresponding to each microlens of the light-field capture device. Interstitial spaces between the microlens portions may be identified and used to locate one or more center locations of the microlens portions. The center locations may be used to generate a model that indicates the microlens positions. Additionally or alternatively, the calibration light field image may be used to select one or more contour samples from among multiple contour samples of the microlens portions. The contour sample may be fitted to a circle centered at a center location of a microlens portion to identify the center location, which may then be used to generate a model that indicates the microlens positions. Multiple iterations may be used to enhance the accuracy of the models.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 28, 2016
    Inventors: Chia-Kai Liang, Zejing Wang