Patents by Inventor Zejun Wang

Zejun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828826
    Abstract: The present invention discloses an analysis method for dynamic contrast-enhanced magnetic resonance image. Firstly, the time-series signal of vascular contrast agent concentration, AIF, of biological individual is obtained from DCE-MRI time-series data. Secondly, perform the nonlinear least sum of square fitting by using the full Shutter-Speed model (SSMfull) and the simplified vascular Shutter-Speed model (SSMvas) on the DCE-MRI time-series signal of each pixel, and the fitting results of DCE-MRI time-series signal are obtained. Thirdly, the corrected Akaike Information Criterion (AICC) score is used to comparing the DCE-MRI time-series signal fitting results to select the optimal model. If the optimal model is SSMfull, distribution maps of five physiological parameters. Ktrans, pb po, kbo, and kio, are produced after fitting; if the optimal model is SSMvas, distribution maps of three physiological parameters, Ktrans, pb, and kbo, are produced after fitting.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: November 28, 2023
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Ruiliang Bai, Zejun Wang, Guangxu Han
  • Publication number: 20230240981
    Abstract: A therapeutic hybrid microneedle patch mimics the inherent counter-regulatory effects of ?-cells and ?-cells for blood glucose management by dynamically releasing insulin or glucagon contained within the microneedles of the therapeutic hybrid microneedle patch. The two types of microneedles in the therapeutic hybrid microneedle patch share a co-polymerized matrix but comprise different ratios of the key monomers to be ‘dually-responsive’ to both hyper- and hypoglycemic glucose conditions. In a type 1 diabetic mouse model, the therapeutic hybrid microneedle patch effectively controls hyperglycemia while minimizing the occurrence of hypoglycemia in the setting of insulin therapy and simulated delayed meal or insulin overdose. In other embodiments, multiple patches are applied to achieve similar results.
    Type: Application
    Filed: June 29, 2021
    Publication date: August 3, 2023
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Zhen Gu, Zejun Wang
  • Patent number: 11469035
    Abstract: The present disclosure provides a heat dissipation structure for a magnetic component and a magnetic component having the same. The magnetic component includes a plurality of heat dissipation pins, which are disposed on the winding of the magnetic component, wherein the magnetic component has one or more windings. The heat dissipation structure includes a circuit board on which a plurality of heat dissipation channels are disposed, and the heat dissipation pins of the windings are in contact with the heat dissipation channels; a plurality of heat conduction portions are disposed correspondingly under the heat dissipation channels of the circuit board; a heat conduction layer is arranged under the heat conduction portions and contacts with the heat conduction portions; and a heat dissipation layer is arranged under the heat conduction layer and contacts with the heat conduction layer.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: October 11, 2022
    Assignee: Delta Electronics (Shanghai) CO., LTD
    Inventors: Chao Yan, Zejun Wang, Yiwen Lu, Zhihua Li
  • Publication number: 20220018924
    Abstract: The present invention discloses an analysis method for dynamic contrast-enhanced magnetic resonance image. Firstly, the time-series signal of vascular contrast agent concentration, AIF, of biological individual is obtained from DCE-MRI time-series data. Secondly, perform the nonlinear least sum of square fitting by using the full Shutter-Speed model (SSMfull) and the simplified vascular Shutter-Speed model (SSMvas) on the DCE-MRI time-series signal of each pixel, and the fitting results of DCE-MRI time-series signal are obtained. Thirdly, the corrected Akaike Information Criterion (AICC) score is used to comparing the DCE-MRI time-series signal fitting results to select the optimal model. If the optimal model is SSMfull, distribution maps of five physiological parameters. Ktrans, pb po, kbo, and kio, are produced after fitting; if the optimal model is SSMvas, distribution maps of three physiological parameters, Ktrans, pb, and kbo, are produced after fitting.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 20, 2022
    Inventors: RUILIANG BAI, ZEJUN WANG, GUANGXU HAN
  • Publication number: 20190244747
    Abstract: The present disclosure provides a heat dissipation structure for a magnetic component and a magnetic component having the same. The magnetic component includes a plurality of heat dissipation pins, which are disposed on the winding of the magnetic component, wherein the magnetic component has one or more windings. The heat dissipation structure includes a circuit board on which a plurality of heat dissipation channels are disposed, and the heat dissipation pins of the windings are in contact with the heat dissipation channels; a plurality of heat conduction portions are disposed correspondingly under the heat dissipation channels of the circuit board; a heat conduction layer is arranged under the heat conduction portions and contacts with the heat conduction portions; and a heat dissipation layer is arranged under the heat conduction layer and contacts with the heat conduction layer.
    Type: Application
    Filed: January 4, 2019
    Publication date: August 8, 2019
    Applicant: Delta Electronics (Shanghai) CO., LTD
    Inventors: Chao YAN, Zejun WANG, Yiwen LU, Zhihua LI
  • Patent number: 9706690
    Abstract: A heat-dissipating system for high-power cabinet is provided, which comprises: a cabinet; at least one main air duct, which is formed in the cabinet with a first opening and a second opening, and a first heat-generating assembly, a second heat-generating assembly and at least one first fan, which are mounted in the at least one main air duct, wherein the first fan is mounted between the first heat-generating assembly and the second heat-generating assembly; and the outlet of the first fan faces the first heat-generating assembly, airflow enters the main air duct from the first opening of the main air duct, flows through the second heat-generating assembly, an inlet of the first fan, an outlet of the first fan, and the first heat-generating assembly in sequence, and finally is discharged out of the cabinet from the second opening of the main air duct cabinet.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 11, 2017
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Teng Liu, Zejun Wang, Aixing Tong, Meihua Jin
  • Publication number: 20140063739
    Abstract: A heat-dissipating system for high-power cabinet is provided, which comprises: a cabinet; at least one main air duct, which is formed in the cabinet with a first opening and a second opening, and a first heat-generating assembly, a second heat-generating assembly and at least one first fan, which are mounted in the at least one main air duct, wherein the first fan is mounted between the first heat-generating assembly and the second heat-generating assembly; and the outlet of the first fan faces the first heat-generating assembly, airflow enters the main air duct from the first opening of the main air duct, flows through the second heat-generating assembly, an inlet of the first fan, an outlet of the first fan, and the first heat-generating assembly in sequence, and finally is discharged out of the cabinet from the second opening of the main air duct cabinet.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: Teng Liu, Zejun Wang, Aixing Tong, Meihua Jin