Patents by Inventor Zeljko Kotanjac

Zeljko Kotanjac has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11753364
    Abstract: A process for continuous production of C2-C4-monoalkanolamines by reaction of a corresponding C2-C4-alkylene oxide with a molar excess of ammonia (NH3), wherein aqueous ammonia is employed, in the liquid phase and in the presence of an acidic cation exchanger as catalyst which contains a crosslinked copolymer comprising acidic functional groups as the carrier matrix, wherein the cation exchanger has a total exchange capacity of not less than 1.8 eq/L.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: September 12, 2023
    Assignee: BASF SE
    Inventors: Christian Gruenanger, Gabriele Iffland, Zeljko Kotanjac, Hermann Luyken, Thomas Krug, Jian Zhong Yi, Johann-Peter Melder
  • Publication number: 20210363097
    Abstract: A process for continuous production of C2-C4-monoalkanolamines by reaction of a corresponding C2-C4-alkylene oxide with a molar excess of ammonia (NH3), wherein aqueous ammonia is employed, in the liquid phase and in the presence of an acidic cation exchanger as catalyst which contains a crosslinked copolymer comprising acidic functional groups as the carrier matrix, wherein the cation exchanger has a total exchange capacity of not less than 1.8 eq/L.
    Type: Application
    Filed: January 28, 2019
    Publication date: November 25, 2021
    Inventors: Christian GRUENANGER, Gabriele IFFLAND, Zeljko KOTANJAC, Hermann LUYKEN, Thomas KRUG, Jian Zhong YI, Johann-Peter MELDER
  • Publication number: 20210214300
    Abstract: The present invention relates to a process for the conversion of ethylene oxide to 2-aminoethanol and/or Di(2-hydroxyethyl)amine comprising (i) providing a catalyst comprising a zeolitic material comprising YO2 and X2O3 in its framework structure, wherein Y is a tetravalent element and X is a trivalent element, wherein the zeolitic material has a framework-type structure selected from the group consisting of MFI and/or MEL, including MEL/MFI intergrowths, and wherein the zeolitic material contains one or more rare earth elements; (ii) providing a mixture in the liquid phase comprising ethylene oxide and ammonia; (iii) contacting the catalyst provided in (i) with the mixture in the liquid phase provided in (ii) for converting ethylene oxide to 2-aminoethanol and/or Di(2-hydroxyethyl)amine, wherein the catalyst provided in (i) is obtained and/or obtainable by a process comprising loading one or more salts of the one or more rare earth elements into the pores of the porous structure of the zeolitic material and
    Type: Application
    Filed: May 29, 2019
    Publication date: July 15, 2021
    Inventors: Andrei-Nicolae PARVULESCU, Johann-Peter MELDER, Ulrich MUELLER, Alexander Michael HAYDL, Zeljko KOTANJAC, Hermann LUYKEN, Christian GRUENANGER
  • Publication number: 20200016579
    Abstract: A process for activating a fixed catalyst bed is disclosed. The fixed catalyst bed includes monolithic shaped catalyst bodies or include monolithic shaped catalyst bodies including at a first metal selected from Ni, Fe, Co, Cu, Cr, Pt, Ag, Au and Pd, and a second component selected from Al, Zn and Si. The fixed catalyst bed, for activation, is treated with an aqueous base having a strength of not more than 3.5% by weight. The base is selected from alkali metal hydroxides, alkaline earth metal hydroxides and mixtures thereof. The fixed catalyst bed has a temperature gradient during the activation and the temperature differential between the coldest point in the fixed catalyst bed and the warmest point in the fixed catalyst bed is kept at not more than 50 K.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 16, 2020
    Inventors: Michael SCHREIBER, Zeljko KOTANJAC, Michael NILLES, Irene de WISPELAERE, Michael SCHWARZ, Rolf PINKOS, Marie Katrin SCHROETER
  • Publication number: 20190344248
    Abstract: Provided herein is a novel process for providing a fixed catalyst bed including doped structured shaped catalyst bodies, to a reactor including such a fixed catalyst bed installed in a fixed location, and to a use of the fixed catalyst beds and reactors thus obtained for hydrogenation reactions.
    Type: Application
    Filed: September 13, 2017
    Publication date: November 14, 2019
    Inventors: Rolf Pinkos, Michael Schreiber, Zeljko Kotanjac, Michael Nilles, Irene de Wispelaere, Michael Schwarz, Marie Katrin Schroeter
  • Publication number: 20190210010
    Abstract: A process for hydrogenating a hydrogenatable organic compound in a reactor including a fixed catalyst bed. The fixed catalyst bed includes monolithic shaped catalyst bodies having pores and/or channels. The catalyst bodies include at least one element selected from Ni, Fe, Co, Cu, Cr, Pt, Ag, Au, Pd, Mn, Re, Ru, Rh and Ir. The CO content in the gas phase within the reactor during hydrogenation is within a range from 0.1 to 10,000 ppm by volume. In any section in the normal plane to flow direction through the fixed catalyst bed, at least 90% of the pores and channels have an area of not more than 3 mm2.
    Type: Application
    Filed: September 14, 2017
    Publication date: July 11, 2019
    Inventors: Rolf Pinkos, Irene de Wispelaere, Michael Schwarz, Michael Schreiber, Zeljko Kotanjac, Michael Nilles