Patents by Inventor Zengmin Li

Zengmin Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10648028
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: May 12, 2020
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Patent number: 10633700
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: April 28, 2020
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Publication number: 20200115745
    Abstract: This disclosure is related to a method of sequencing a single-stranded DNA using deoxynucleotide polyphosphate analogues and translocation of tags from incorporated deoxynucleotide polyphosphate analogues through a nanopore.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue JU, Shiv KUMAR, Zengmin LI, Chuanjuan TAO, Minchen CHIEN, James J. RUSSO, Sergey KALACHIKOV, Ken SHEPARD, Jacob Karl ROSENSTEIN
  • Publication number: 20200069717
    Abstract: Disclosed herein, inter alia, are compounds, compositions, and methods of thereof in the sequencing a nucleic acid.
    Type: Application
    Filed: May 23, 2017
    Publication date: March 5, 2020
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Jingyue Ju, Xin Chen, Xiaoxu Li, Zengmin Li, Min-Kang Hsieh, Minchen Chien, Shundi Shi, Jianyi Ren, Cheng Guo, Shiv Kumar, James J. Russo, Chuanjuan Tao, Steffen Jockusch, Sergey Kalachikov
  • Patent number: 10577652
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: March 3, 2020
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Patent number: 10570446
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: February 25, 2020
    Assignee: THE TRUSTEE OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Publication number: 20190390271
    Abstract: This invention provides a process for sequencing nucleic acids using 3? modified deoxynucleotide analogues or 3? modified deoxyinosine triphosphate analogues, and 3? modified dideoxynucleotide analogues having a detectable marker attached thereto.
    Type: Application
    Filed: April 15, 2019
    Publication date: December 26, 2019
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Jingyue Ju, Dae Hyun Kim, Jia Guo, Qinglin Meng, Zengmin Li, Huanyan Cao
  • Patent number: 10457984
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: October 29, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Patent number: 10443096
    Abstract: This disclosure is related to a method of sequencing a single-stranded DNA using deoxynucleotide polyphosphate analogues and translocation of tags from incorporated deoxynucleotide polyphosphate analogues through a nanopore.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 15, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Shiv Kumar, Zengmin Li, Chuanjuan Tao, Minchen Chien, James J. Russo, Sergey Kalachikov, Ken Shepard, Jacob Karl Rosenstein
  • Patent number: 10435742
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: October 8, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Patent number: 10428380
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analog after the nucleotide analog is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogs which comprise unique labels attached to the nucleotide analog through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: October 1, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Patent number: 10407459
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: September 10, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Patent number: 10407458
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analog after the nucleotide analog is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogs which comprise unique labels attached to the nucleotide analog through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: September 10, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Publication number: 20190153527
    Abstract: This invention provides nucleotide analogues each of which comprises a tag comprising one or more Forster resonance energy transfer (FRET) acceptor fluorophores, a nucleotide polymerase having one or more FRET donor fluorophores, and methods for sequencing single-stranded
    Type: Application
    Filed: April 4, 2017
    Publication date: May 23, 2019
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Shiv Kumar, James J. Russo, Steffen Jockusch, Zengmin Li, Xiaoxu Li, Sergey M. Kalachikov, Irina Morozova
  • Publication number: 20190135850
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 9, 2019
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Publication number: 20190135851
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 9, 2019
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Publication number: 20190112650
    Abstract: This invention provides nucleoside polyphosphate analogues each of which comprises a tag comprising a plurality of Raman-scattering moieties; compounds comprising said nucleoside polyphosphate analogs. This invention also provides nucleotide polymerases with one or more attached and/or conjugated noble metal nanoparticles, wherein the noble metal nanoparticles are surface-enhanced Raman spectroscopy (SERS) substrates thereby creating a region of enhanced sensitivity for surface enhanced Raman spectroscopy (SERS) within or adjacent to the polymerase. This invention also provides a surface with regions of enhanced sensitivity for surface enhanced Raman spectroscopy comprising interspersed rough or nanostructured noble metal surface. This invention also provides methods for determining the sequence of a single stranded DNA or RNA polynucleotide using one or more of nucleoside polyphosphate analogues, polymerase with noble metal nanoparticles, and surface with noble metal.
    Type: Application
    Filed: April 4, 2017
    Publication date: April 18, 2019
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Shiv Kumar, James J. Russo, Steffen Jockusch, Zengmin Li, Xiaoxu Li, Sergey Kalachikov, Irina Morozova
  • Patent number: 10260094
    Abstract: This invention provides a process for sequencing nucleic acids using 3? modified deoxynucleotide analogs or 3? modified deoxyinosine triphosphate analogs, and 3? modified dideoxynucleotide analogs having a detectable marker attached to a base thereof.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 16, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Dae Hyun Kim, Jia Guo, Qinglin Meng, Zengmin Li, Huanyan Cao
  • Publication number: 20190092806
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki
  • Publication number: 20190092805
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki