Patents by Inventor Zhangfeng Zheng

Zhangfeng Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955613
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: April 9, 2024
    Assignee: Worcester Polytechnic Institute
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan, Kee-Chan Kim
  • Publication number: 20220311068
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Application
    Filed: June 15, 2022
    Publication date: September 29, 2022
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan, Kee-Chan Kim
  • Publication number: 20210391606
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan, Kee-Chan Kim
  • Publication number: 20210384563
    Abstract: A method for recycling anode materials from a comingled recycling stream derived from exhausted Li ion batteries includes receiving a precipitate quantity remaining from a cathode recycling stream. This precipitate is almost exclusively graphite used for the anode material in the recycled batteries. The precipitate results from an acid leach of charge material from the lithium battery recycling stream. A strong acid is added to the precipitate for removal of residual cathode and separator materials and the mixture heated. The strong acid removes residual aluminum oxide from the separator by transformation to aluminum sulfate. Washing the acid treated precipitate removes water soluble contaminants, such as the aluminum sulfate reacted from the aluminum oxide and sulfuric acid, to generate substantially pure graphite. Any residual material remaining from the cathode recycling phase is also removed.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 9, 2021
    Inventors: Eric Gratz, Zhangfeng Zheng
  • Patent number: 11127992
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: September 21, 2021
    Assignee: Worcester Polytechnic Institute
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan
  • Publication number: 20200144591
    Abstract: A dry electrode manufacturing process is employed for low cost battery through a dry mixing and formation process. A thermal activation renders the dry fabricated electrode comparable to conventional slurry casted electrodes. The dry electrode mixture results from a combination of a plurality of types of constituent particles, including at least an active charge material and a binder, and typically a conductive material such as carbon. The process heats the deposited mixture to a moderate temperature for activating the binder for adhering the mixture to the substrate, and compresses the deposited mixture to a thickness for achieving an electrical sufficiency of the compressed, deposited mixture as a charge material in a lithium-ion battery. In order to increase the bonding between the current collector and charge materials, an adhesive interlayer is applied through dry printing.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 7, 2020
    Inventors: Yan Wang, Zhangfeng Zheng, Brandon Ludwig, Heng Pan, Jin Liu, Yangtao Liu
  • Patent number: 10547044
    Abstract: A dry electrode manufacturing process employed for low cost battery through a dry mixing and formation process. A thermal activation renders the dry fabricated electrode comparable to conventional slurry casted electrodes. The dry electrode mixture results from a combination of a plurality of types of constituent particles, including at least an active charge material and a binder, and typically a conductive material such as carbon. The process heats the deposited mixture to a moderate temperature for activating the binder for adhering the mixture to the substrate; and compresses the deposited mixture to a thickness for achieving an electrical sufficiency of the compressed, deposited mixture as a charge material in a battery.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 28, 2020
    Assignees: Worcester Polytechnic Institute, The Curators of the University of Missouri
    Inventors: Yan Wang, Zhangfeng Zheng, Brandon Ludwig, Heng Pan
  • Patent number: 10522884
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: December 31, 2019
    Assignee: Worcester Polytechnic Institute
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan
  • Publication number: 20190123402
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 25, 2019
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan
  • Publication number: 20170077564
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 16, 2017
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan
  • Publication number: 20170062798
    Abstract: A dry electrode manufacturing process employed for low cost battery through a dry mixing and formation process. A thermal activation renders the dry fabricated electrode comparable to conventional slurry casted electrodes. The dry electrode mixture results from a combination of a plurality of types of constituent particles, including at least an active charge material and a binder, and typically a conductive material such as carbon. The process heats the deposited mixture to a moderate temperature for activating the binder for adhering the mixture to the substrate; and compresses the deposited mixture to a thickness for achieving an electrical sufficiency of the compressed, deposited mixture as a charge material in a battery.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 2, 2017
    Inventors: Yan Wang, Zhangfeng Zheng, Brandon Ludwig, Heng Pan