Patents by Inventor Zhanhu Guo

Zhanhu Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9050605
    Abstract: A nanocomposite material for use as an electromagnetic wave or radio frequency absorber or as a filter to trap or remove heavy metals. The nanocomposite material may be made with a one-pot synthesis, or thermodecomposition process, of magnetic graphene nanocomposites decorated with core-double-shell nanoparticles, wherein the double shell iron nanoparticles may comprise a crystalline iron core, an inner iron oxide layer around the crystalline iron core, and an outermost amorphous Si—S—O compound shell around the iron oxide layer.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: June 9, 2015
    Assignee: Lamar University, A Component of the Texas State University System, An Agency of the State of Texas
    Inventor: Zhanhu Guo
  • Patent number: 9023230
    Abstract: The present invention relates facile method to synthesize magnetic PNCs with highly dispersed and narrow size distributed NPs. The PNCs have highly thermal stability and unique electrical and dielectric properties.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 5, 2015
    Assignees: Lamar University, A Component of the Texas State University System, An Agency of the State of Texas, Texas State University San Marcos, A Component of the Texas State University System, An Agency of the State of Texas
    Inventors: Luyi Sun, Zhanhu Guo, Jiahua Zhu, Suying Wei
  • Patent number: 8372908
    Abstract: An improved method is provided to prepare reinforced resin nanocomposites without the need of surfactants or coupling agents. The present invention comprises the use of monomers for improving the dispersion of nano-sized materials and enhancing the particle/matrix interaction. One comprises mixing a plurality of nanoparticles with a monomer resin to form a mixture, blending a catalyst and a promoter with the mixture, and curing the blended mixture to form a polymerized nanocomposite. The monomers, which serve to stabilize the nanoparticles, are covalently bound onto the nanoparticle surface and copolymerize with non-bound monomers after introduction of a catalyst and a promoter that initiate polymerization. Without any additional surfactant or coupling agent, the resin is chemically bound onto the nanoparticle surface and protects the iron nanoparticles from agglomeration and oxidation.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: February 12, 2013
    Assignee: The Regents of the University of California
    Inventors: Zhanhu Guo, H. Thomas Hahn
  • Publication number: 20090318641
    Abstract: An improved method is provided to prepare reinforced resin nanocomposites without the need of surfactants or coupling agents. The present invention comprises the use of monomers for improving the dispersion of nano-sized materials and enhancing the particle/matrix interaction. One comprises mixing a plurality of nanoparticles with a monomer resin to form a mixture, blending a catalyst and a promoter with the mixture, and curing the blended mixture to form a polymerized nanocomposite. The monomers, which serve to stabilize the nanoparticles, are covalently bound onto the nanoparticle surface and copolymerize with non-bound monomers after introduction of a catalyst and a promoter that initiate polymerization. Without any additional surfactant or coupling agent, the resin is chemically bound onto the nanoparticle surface and protects the iron nanoparticles from agglomeration and oxidation.
    Type: Application
    Filed: May 15, 2009
    Publication date: December 24, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Zhanhu Guo, H. Thomas Hahn
  • Publication number: 20060177660
    Abstract: A method is disclosed for synthesizing core-shell nanoparticles or microparticles in an aqueous solution. A displacement reaction produces a protective, noble metal shell around nanoparticles or microparticles, for example a copper shell around cobalt nanoparticles. In an electroless displacement reaction in an aqueous solution, a less noble metal core is oxidized by cations of a more noble metal in solution, and the noble metal ions are reduced by the less noble atoms of the metal core, forming a thin layer of the reduced noble metal on the surface of the core metal. The formation of the nanoscale shell is self-terminating once the core is fully covered, because the core metal is then inaccessible for further redox reaction with ions in solution. The magnetic core is preferably a ferromagnetic metal, e.g., Co, Fe, Ni. The shell is a more noble metal, e.g., Cu, Ag, Au, Pt, or Pd.
    Type: Application
    Filed: February 9, 2005
    Publication date: August 10, 2006
    Inventors: Challa Kumar, Elizabeth Podlaha, Zhanhu Guo, Josef Hormes