Patents by Inventor Zhanhuan Shang

Zhanhuan Shang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11365423
    Abstract: Disclosed is a method for obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants. The method comprises: selecting a target site from an exon region of a compound leaf developmental regulatory gene MsPALM1 of Medicago sativa and constructing a plant CRISPR/Cas9 editing recombinant vector MsCRISPR/Cas9::PALM1 and introducing the vector into Medicago sativa cells and regenerating into plants, cutting and repairing to cause a loss-of-function mutation in the MsPALM1 gene of Medicago sativa cells, and then screening the mutant plants by restriction endonuclease digestion and/or targeted deep sequencing of the target sites of the regenerated plants to obtain lines carrying four MsPALM1 allelic genes with simultaneous loss of function mutation. After phenotypic identification, it was confirmed that the compound leaves of the regenerated plants changed from three leaflets to five leaflets.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: June 21, 2022
    Assignee: GUANGDONG SANJIE FORAGE BIOTECHNOLOGY CO., LTD
    Inventors: Haitao Chen, Wen Wang, Xiongping Xie, Qiang Qiu, Zhanhuan Shang, Kexian Su, Hui He
  • Publication number: 20210292777
    Abstract: A method for site-specific mutagenesis of Medicago sativa genes by using a CRISPR/Cas9 system. The method comprises: first constructing a binary expression vector MsCRISPR/Cas9 that can be used for transforming Medicago sativa by Agrobacterium tumefaciens; then designing a target site for a target gene, and ligating the DNA fragment containing the guide sequence of the target site into MsCRISPR/Cas9 to construct a vector MsCRISPR/Cas9::target; and then transforming the Medicago sativa by Agrobacterium tumefaciens, and generating, by screening, a mutant transformed plant with the target gene mutated. According to the method, an MtU6 promoter is used for driving sgRNA transcription in the Medicago sativa.
    Type: Application
    Filed: July 3, 2019
    Publication date: September 23, 2021
    Applicant: Guangdong Sanjie Forage Biotechnology Co., Ltd
    Inventors: Haitao Chen, Wen Wang, Xiongping Xie, Qiang Qiu, Zhanhuan Shang, Kexian Su, Hui He
  • Publication number: 20210269816
    Abstract: Disclosed is a method for obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants. The method comprises: selecting a target site from an exon region of a compound leaf developmental regulatory gene MsPALM1 of Medicago sativa and constructing a plant CRISPR/Cas9 editing recombinant vector MsCRISPR/Cas9::PALM1 and introducing the vector into Medicago sativa cells and regenerating into plants, cutting and repairing to cause a loss-of-function mutation in the MsPALM1 gene of Medicago sativa cells, and then screening the mutant plants by restriction endonuclease digestion and/or targeted deep sequencing of the target sites of the regenerated plants to obtain lines carrying four MsPALM1 allelic genes with simultaneous loss of function mutation. After phenotypic identification, it was confirmed that the compound leaves of the regenerated plants changed from three leaflets to five leaflets.
    Type: Application
    Filed: July 3, 2019
    Publication date: September 2, 2021
    Applicant: Guangdong Sanjie Forage Biotechnology Co., Ltd
    Inventors: Haitao Chen, Wen Wang, Xiongping Xie, Qiang Qiu, Zhanhuan Shang, Kexian Su, Hui He
  • Publication number: 20210171973
    Abstract: Disclosed is a method for obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants. The method comprises: selecting a target site from an exon region of a compound leaf developmental regulatory gene MsPALM1 of Medicago sativa and constructing a plant CRISPR/Cas9 editing recombinant vector MsCRISPR/Cas9::PALM1 and introducing the vector into Medicago sativa cells and regenerating into plants, cutting and repairing to cause a loss-of-function mutation in the MsPALM1 gene of Medicago sativa cells, and then screening the mutant plants by restriction endonuclease digestion and/or targeted deep sequencing of the target sites of the regenerated plants to obtain lines carrying four MsPALM1 allelic genes with simultaneous loss of function mutation. After phenotypic identification, it was confirmed that the compound leaves of the regenerated plants changed from three leaflets to five leaflets.
    Type: Application
    Filed: January 5, 2021
    Publication date: June 10, 2021
    Applicant: Guangdong Sanjie Forage Biotechnology Co., Ltd
    Inventors: Haitao Chen, Wen Wang, Xiongping Xie, Qiang Qiu, Zhanhuan Shang, Kexian Su, Hui He
  • Publication number: 20210147844
    Abstract: A method for site-specific mutagenesis of Medicago sativa genes by using a CRISPR/Cas9 system. The method comprises: first constructing a binary expression vector MsCRISPR/Cas9 that can be used for transforming Medicago sativa by Agrobacterium tumefaciens; then designing a target site for a target gene, and ligating the DNA fragment containing the guide sequence of the target site into MsCRISPR/Cas9 to construct a vector MsCRISPR/Cas9::target; and then transforming the Medicago sativa by Agrobacterium tumefaciens, and generating, by screening, a mutant transformed plant with the target gene mutated. According to the method, an MtU6 promoter is used for driving sgRNA transcription in the Medicago sativa.
    Type: Application
    Filed: January 5, 2021
    Publication date: May 20, 2021
    Applicant: Guangdong Sanjie Forage Biotechnology Co., Ltd
    Inventors: Haitao Chen, Wen Wang, Xiongping Xie, Qiang Qiu, Zhanhuan Shang, Kexian Su, Hui He