Patents by Inventor Zhanwen Wang

Zhanwen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11142911
    Abstract: The present invention discloses a concrete-encased concrete-filled steel tube (CFST) column connection structure, a concrete-encased CFST column comprising such a connection structure, and a construction method for constructing such a concrete-encased CFST column, in the technical field of connection of concrete-encased CFST columns. Exposed steel tubes at the connection ends of two split concrete-encased CFST columns are connected through a core positioning sleeve of a concrete-encased CFST column connection structure. Exposed longitudinal bars of the two split concrete-encased CFST columns are connected through longitudinal bar sleeves of the concrete-encased CFST column connection structure. A space between the two split concrete-encased CFST columns is sealed by an external sealing sleeve of the concrete-encased CFST column connection structure; and the space in the external sealing sleeve and around the first and second exposed steel tubes is filled with a concrete slurry.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: October 12, 2021
    Inventors: Jianwei Chen, Zhanwen Wang, Xiaoqing Song, Tao Yang, Jiushun Yao
  • Publication number: 20200392732
    Abstract: The present invention discloses a concrete-encased concrete-filled steel tube (CFST) column connection structure, a concrete-encased CFST column comprising such a connection structure, and a construction method for constructing such a concrete-encased CFST column, in the technical field of connection of concrete-encased CFST columns. Exposed steel tubes at the connection ends of two split concrete-encased CFST columns are connected through a core positioning sleeve of a concrete-encased CFST column connection structure. Exposed longitudinal bars of the two split concrete-encased CFST columns are connected through longitudinal bar sleeves of the concrete-encased CFST column connection structure. A space between the two split concrete-encased CFST columns is sealed by an external sealing sleeve of the concrete-encased CFST column connection structure; and the space in the external sealing sleeve and around the first and second exposed steel tubes is filled with a concrete slurry.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 17, 2020
    Inventors: Jianwei CHEN, Zhanwen WANG, Xiaoqing SONG, Tao YANG, Jiushun YAO
  • Publication number: 20090286675
    Abstract: The present invention relates to a method for continuous production of carbon nanotubes in a nano-agglomerate fluidized bed, which comprises the following steps: loading transition metal compounds on a support, obtaining supported nanosized metal catalysts by reducing or dissociating, catalytically decomposing a carbon-source gas, and growing carbon nanotubes on the catalyst support by chemical vapor deposition of carbon atoms. The carbon nanotubes are 4˜100 nm in diameter and 0.5˜1000 ?m in length. The carbon nanotube agglomerates, ranged between 1˜1000 ?m, are smoothly fluidized under 0.005 to 2 m/s superficial gas velocity and 20-800 kg/m3 bed density in the fluidized-bed reactor. The apparatus is simple and easy to operate, has a high reaction rate, and it can be used to produce carbon nanotubes with high degree of crystallization, high purity, and high yield.
    Type: Application
    Filed: March 9, 2009
    Publication date: November 19, 2009
    Applicant: Tsinghua University
    Inventors: Fei Wei, Yao Wang, Guohua Luo, Hao Yu, Zhifei Li, Weizhong Qian, Zhanwen Wang, Yong Jin
  • Patent number: 7563427
    Abstract: The present invention relates to a method for continuous production of carbon nanotubes in a nano-agglomerate fluidized bed, which comprises the following steps: loading transition metal compounds on a support, obtaining supported nanosized metal catalysts by reducing or dissociating, catalytically decomposing a carbon-source gas, and growing carbon nanotubes on the catalyst support by chemical vapor deposition of carbon atoms. The carbon nanotubes are 4˜100 nm in diameter and 0.5˜1000 ?m in length. The carbon nanotube agglomerates, ranged between 1˜1000 ?m, are smoothly fluidized under 0.005 to 2 m/s superficial gas velocity and 20˜800 kg/m3 bed density in the fluidized-bed reactor. The apparatus is simple and easy to operate, has a high reaction rate, and it can be used to produce carbon nanotubes with high degree of crystallization, high purity, and high yield.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: July 21, 2009
    Assignee: Tsinghua University
    Inventors: Fei Wei, Yao Wang, Guohua Luo, Hao Yu, Zhifei Li, Weizhong Qian, Zhanwen Wang, Yong Jin
  • Publication number: 20040151654
    Abstract: The present invention relates to a method for continuous production of carbon nanotubes in a nano-agglomerate fluidized bed, which comprises the following steps: loading transition metal compounds on a support, obtaining supported nanosized metal catalysts by reducing or dissociating, catalytically decomposing a carbon-source gas, and growing carbon nanotubes on the catalyst support by chemical vapor deposition of carbon atoms. The carbon nanotubes are 4˜100 nm in diameter and 0.5˜1000 &mgr;m in length. The carbon nanotube agglomerates, ranged between 1˜1000 &mgr;m, are smoothly fluidized under 0.005 to 2 m/s superficial gas velocity and 20˜800 kg/m3 bed density in the fluidized-bed reactor. The apparatus is simple and easy to operate, has a high reaction rate, and it can be used to produce carbon nanotubes with high degree of crystallization, high purity, and high yield.
    Type: Application
    Filed: November 24, 2003
    Publication date: August 5, 2004
    Inventors: Fei Wei, Yao Wang, Guohua Luo, Hao Yu, Zhifei Li, Weizhong Qian, Zhanwen Wang, Yong Jin
  • Patent number: 5789640
    Abstract: Disclosed is a process for continuous alkylation of aromatics or their derivatives in the presence of a solid acid catalyst in a liquid-solid circulating fluidized bed system, said system comprising a liquid-solid cocurrent upflow reactor, a sedimentation washing tower for the used catalyst, a liquid-solid cocurrent upflow regenerator, a sedimentation washing tower for the regenerated catalyst, and two vortical liquid-solid separators. By regeneration of the used catalyst, continuous alkylation process is achieved in this system.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: August 4, 1998
    Assignees: China Petro-Chemical Corporation, Tsinghua University, Research Institute of Petroleum Processing Sinopec
    Inventors: Yong Jin, Wugeng Liang, Zhanwen Wang, Zhiging Yu, Enze Min, Mingyuan He, Zhijian Da