Patents by Inventor Zhao Feng

Zhao Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981718
    Abstract: The present disclosure relates to a dual-function protein for regulating blood glucose and lipid metabolism, wherein said dual-function protein comprises a human GLP-1 analog and human FGF21. In the present disclosure, provided is a method for preparing said dual function protein, and also provided is the use of said dual-function protein in the preparation of a biological substance for treating type 2 diabetes, obesity, dyslipidemia, fatty liver disease and/or metabolic syndrome. The dual-function protein provided in the present disclosure can synergistically regulate blood glucose and lipid levels in vivo, and satisfy multiple requirements for patients with type 2 diabetes such as lowering blood glucose, relieving hepatic steatosis, reducing body weight and improving metabolic disorders of circulating lipids.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: May 14, 2024
    Assignee: AMPSOURCE BIOPHARMA SHANGHAI INC.
    Inventors: Zhao Dong, Chi Zhou, Xiong Feng, Jiyu Zhang, Shixiang Jia, Qiang Li
  • Patent number: 11926787
    Abstract: A well cementing method is described for improving cementing quality by controlling the hydration heat of cement slurry. By controlling the degree and/or rate of hydration heat release from cement slurry, the method improves the hydration heat release during formation of cement with curing of cement slurry, improves the binding quality between the cement and the interfaces, and in turn improves the cementing quality at the open hole section and/or the overlap section. The cementing method improves cementing quality of oil and gas wells and reduces the risk of annular pressure.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: March 12, 2024
    Assignees: PetroChina Company Limited, CNPC Engineering Technology R&D Company Limited
    Inventors: Shuoqiong Liu, Hua Zhang, Jianzhou Jin, Ming Xu, Yongjin Yu, Fengzhong Qi, Congfeng Qu, Hong Yue, Youcheng Zheng, Wei Li, Yong Ma, Youzhi Zheng, Zhao Huang, Jinping Yuan, Zhiwei Ding, Chongfeng Zhou, Chi Zhang, Zishuai Liu, Hongfei Ji, Yuchao Guo, Xiujian Xia, Yong Li, Jiyun Shen, Huiting Liu, Yusi Feng, Bin Lyu
  • Patent number: 9269651
    Abstract: A semiconductor chip includes a substrate and a semiconductor layer positioned above the substrate. A hybrid through-silicon via (“TSV”) extends continuously through at least the semiconductor layer and the substrate and includes a first TSV portion and a second TSV portion. A lower portion of the first TSV portion is positioned in the substrate and has a lower surface adjacent to a back side of the substrate and an upper surface below the semiconductor layer. Upper sidewall portions of the first TSV portion extend from the upper surface through at least the semiconductor layer. A depth of the lower portion is greater than a thickness of the upper sidewall portions. The second TSV portion is conductively coupled to the first TSV portion, is laterally surrounded by the upper sidewall portions, and extends continuously from the upper surface through at least the semiconductor layer.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: February 23, 2016
    Assignee: GLOBALFOUNDRIES Singapore PTE LTD
    Inventors: Yu Hong, Liu Huang, Zhao Feng
  • Publication number: 20150179547
    Abstract: A semiconductor chip includes a substrate and a semiconductor layer positioned above the substrate. A hybrid through-silicon via (“TSV”) extends continuously through at least the semiconductor layer and the substrate and includes a first TSV portion and a second TSV portion. A bottom plug portion of the first TSV portion is positioned in the substrate and has a lower surface adjacent to a back side of the substrate and an upper surface below the semiconductor layer. Upper sidewall portions of the first TSV portion extend from the upper surface through at least the semiconductor layer. A depth of the bottom plug portion is greater than a thickness of the upper sidewall portions. The second TSV portion is conductively coupled to the first TSV portion, is laterally surrounded by the upper sidewall portions, and extends continuously from the upper surface through at least the semiconductor layer.
    Type: Application
    Filed: February 25, 2015
    Publication date: June 25, 2015
    Inventors: Yu Hong, Liu Huang, Zhao Feng
  • Patent number: 9006102
    Abstract: Generally, the subject matter disclosed herein relates to conductive via elements, such as through-silicon vias (TSV's), and methods for forming the same. One illustrative method of forming a conductive via element disclosed herein includes forming a via opening in a substrate, the via opening extending through an interlayer dielectric layer formed above the substrate and a device layer formed below the interlayer dielectric layer, and extending into the substrate. The method also includes forming a first portion of the conductive via element comprising a first conductive contact material in a bottom portion of the via opening, and forming a second portion of the conductive via element comprising a second conductive contact material different from the first conductive contact material in an upper portion of the via opening and above the first portion.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: April 14, 2015
    Assignee: GLOBALFOUNDRIES Singapore Pte Ltd
    Inventors: Yu Hong, Liu Huang, Zhao Feng
  • Patent number: 8354327
    Abstract: Generally, the subject matter disclosed herein relates to conductive via elements, such as through-silicon vias (TSV's), and methods for forming the same. One illustrative method disclosed herein includes forming a layer of isolation material above a via opening formed in a semiconductor device, the via opening extending into a substrate of the semiconductor device. The method also includes performing a first planarization process to remove at least an upper portion of the layer of isolation material formed outside of the via opening, and forming a conductive via element inside of the via opening after performing the first planarization process.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 15, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte Ltd
    Inventors: Chen Zengxiang, Zhao Feng, Liu Huang, Yuan Shaoning
  • Publication number: 20120270391
    Abstract: Generally, the subject matter disclosed herein relates to conductive via elements, such as through-silicon vias (TSV's), and methods for forming the same. One illustrative method disclosed herein includes forming a layer of isolation material above a via opening formed in a semiconductor device, the via opening extending into a substrate of the semiconductor device. The method also includes performing a first planarization process to remove at least an upper portion of the layer of isolation material formed outside of the via opening, and forming a conductive via element inside of the via opening after performing the first planarization process.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE LTD
    Inventors: Chen Zengxiang, Zhao Feng, Liu Huang, Yuan Shaoning
  • Publication number: 20120267788
    Abstract: Generally, the subject matter disclosed herein relates to conductive via elements, such as through-silicon vias (TSV's), and methods for forming the same. One illustrative method of forming a conductive via element disclosed herein includes forming a via opening in a substrate, the via opening extending through an interlayer dielectric layer formed above the substrate and a device layer formed below the interlayer dielectric layer, and extending into the substrate. The method also includes forming a first portion of the conductive via element comprising a first conductive contact material in a bottom portion of the via opening, and forming a second portion of the conductive via element comprising a second conductive contact material different from the first conductive contact material in an upper portion of the via opening and above the first portion.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE LTD
    Inventors: Yu Hong, Liu Huang, Zhao Feng
  • Publication number: 20060276182
    Abstract: In an embodiment of the present invention, a call request is received from a calling party. A ring tone is selectively provided to the calling party based on at least one of a calling party identifier and a time parameter. In another embodiment of the present invention, a call request is received from a calling party. A message including a video element is selectively provided based on at least one of a calling party identifier and a time parameter.
    Type: Application
    Filed: June 7, 2005
    Publication date: December 7, 2006
    Inventor: Zhao Feng
  • Patent number: 6850753
    Abstract: A radio frequency front-end receiver includes a single stage low noise amplifier connected with a resistor array and a capacitor array, and a Gilbert-type mixer connected with a PMOS transconductance stage, an inductor and a serially connected current source. The resistor array enables the adjustment of the power gain of the low noise amplifier. The capacitor array tunes the low noise amplifier so that the maximum power gain is at the desired operating frequency. The PMOS transconductance stage reduces the power consumption of the mixer. The inductor increases the impedance and the current source improves the common-mode rejection of the mixer.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: February 1, 2005
    Assignee: MuChip Co., Ltd
    Inventors: Zhao-Feng Zhang, David Jan-Chia Chen, Zhen-Chuan Liu, Meng-Hsiang Lai
  • Publication number: 20030228858
    Abstract: A radio frequency front-end receiver includes a single stage low noise amplifier connected with a resistor array and a capacitor array, and a Gilbert-type mixer connected with a PMOS transconductance stage, an inductor and a serially connected current source. The resistor array enables the adjustment of the power gain of the low noise amplifier. The capacitor array tunes the low noise amplifier so that the maximum power gain is at the desired operating frequency. The PMOS transconductance stage reduces the power consumption of the mixer. The inductor increases the impedance and the current source improves the common-mode rejection of the mixer.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Zhao-Feng Zhang, David Jan-Chia Chen, Zhen-Chuan Liu, Meng-Hsiang Lai