Patents by Inventor Zhaofeng Wu

Zhaofeng Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12272345
    Abstract: For online audio/video conferencing applications deployed in an open office environment, using shared conference devices, it can be advantageous to define an acoustic fence. A non-participant audio received from outside the acoustic fence can be considered noise and filtered out before transmission of an audio signal to a far end recipient. Three suppression stages are used to filter the non-participant audio. The first suppression stage uses beamformers for suppression. The second suppression stage is mask-based, and the third suppression stage is reference-based. The three suppression stages filter out non-participant audio signals, having a wide range of frequencies.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: April 8, 2025
    Assignee: Zoom Communications, Inc.
    Inventors: Zhenghang Gu, Zhaofeng Jia, Qiyong Liu, Ye Wang, Zexian Wu, Chunyu Zhang
  • Publication number: 20240232518
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: March 19, 2024
    Publication date: July 11, 2024
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11960832
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: April 16, 2024
    Assignee: Docugami, Inc.
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11822880
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 21, 2023
    Assignee: Docugami, Inc.
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11816428
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 14, 2023
    Assignee: Docugami, Inc.
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11514238
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 29, 2022
    Assignee: Docugami, Inc.
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11507740
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: November 22, 2022
    Assignee: Docugami, Inc.
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20220245335
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Patent number: 11392763
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: July 19, 2022
    Assignee: DOCUGAMI, INC.
    Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081608
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081601
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081411
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081613
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
  • Publication number: 20210081602
    Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).
    Type: Application
    Filed: August 5, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou