Patents by Inventor Zhaofeng Wu
Zhaofeng Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12272345Abstract: For online audio/video conferencing applications deployed in an open office environment, using shared conference devices, it can be advantageous to define an acoustic fence. A non-participant audio received from outside the acoustic fence can be considered noise and filtered out before transmission of an audio signal to a far end recipient. Three suppression stages are used to filter the non-participant audio. The first suppression stage uses beamformers for suppression. The second suppression stage is mask-based, and the third suppression stage is reference-based. The three suppression stages filter out non-participant audio signals, having a wide range of frequencies.Type: GrantFiled: August 29, 2022Date of Patent: April 8, 2025Assignee: Zoom Communications, Inc.Inventors: Zhenghang Gu, Zhaofeng Jia, Qiyong Liu, Ye Wang, Zexian Wu, Chunyu Zhang
-
Publication number: 20240232518Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: ApplicationFiled: March 19, 2024Publication date: July 11, 2024Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Patent number: 11960832Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: GrantFiled: April 20, 2022Date of Patent: April 16, 2024Assignee: Docugami, Inc.Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Patent number: 11822880Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: GrantFiled: August 5, 2020Date of Patent: November 21, 2023Assignee: Docugami, Inc.Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Patent number: 11816428Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: GrantFiled: August 5, 2020Date of Patent: November 14, 2023Assignee: Docugami, Inc.Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Patent number: 11514238Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: GrantFiled: August 5, 2020Date of Patent: November 29, 2022Assignee: Docugami, Inc.Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Patent number: 11507740Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: GrantFiled: August 5, 2020Date of Patent: November 22, 2022Assignee: Docugami, Inc.Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Publication number: 20220245335Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: ApplicationFiled: April 20, 2022Publication date: August 4, 2022Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael B. Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Patent number: 11392763Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: GrantFiled: August 5, 2020Date of Patent: July 19, 2022Assignee: DOCUGAMI, INC.Inventors: Andrew Paul Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Publication number: 20210081608Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: ApplicationFiled: August 5, 2020Publication date: March 18, 2021Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Publication number: 20210081601Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: ApplicationFiled: August 5, 2020Publication date: March 18, 2021Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Publication number: 20210081411Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: ApplicationFiled: August 5, 2020Publication date: March 18, 2021Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Publication number: 20210081613Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: ApplicationFiled: August 5, 2020Publication date: March 18, 2021Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou
-
Publication number: 20210081602Abstract: Machine learning, artificial intelligence, and other computer-implemented methods are used to identify various semantically important chunks in documents, automatically label them with appropriate datatypes and semantic roles, and use this enhanced information to assist authors and to support downstream processes. Chunk locations, datatypes, and semantic roles can often be automatically determined from what is here called “context”, to wit, the combination of their formatting, structure, and content; those of adjacent or nearby content; overall patterns of occurrence in a document, and similarities of all these things across documents (mainly but not exclusively among documents in the same document set).Type: ApplicationFiled: August 5, 2020Publication date: March 18, 2021Inventors: Andrew Begun, Steven DeRose, Taqi Jaffri, Luis Marti Orosa, Michael Palmer, Jean Paoli, Christina Pavlopoulou, Elena Pricoiu, Swagatika Sarangi, Marcin Sawicki, Manar Shehadeh, Michael Taron, Bhaven Toprani, Zubin Rustom Wadia, David Watson, Eric White, Joshua Yongshin Fan, Kush Gupta, Andrew Minh Hoang, Zhanlin Liu, Jerome George Paliakkara, Zhaofeng Wu, Yue Zhang, Xiaoquan Zhou