Patents by Inventor Zhaoguang PAN

Zhaoguang PAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12104803
    Abstract: The disclosure provides a method, an apparatus, and a storage medium for controlling heating system. The method includes: establishing an objective function and constraints for estimating system parameters of the heating system, in which the heating system includes nodes, pipelines and equivalent branches, the equivalent branch is configured to represent a heating resource or a heating load in the heating system, the system parameters include a resistance coefficient of each of the pipelines and equivalent branches, and a heat dissipation coefficient of each of the pipelines; solving the objective function based on the constraints to obtain the system parameters; modeling the heating system based on the obtained system parameters to obtain control parameters of the heating system; and controlling the heating system based on the control parameters.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: October 1, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Hongbin Sun, Qinglai Guo, Bin Wang, Guanxiong Yin, Tongtian Sheng, Zhaoguang Pan
  • Patent number: 11972182
    Abstract: Provided is a method for a dynamic state estimation of a natural gas network considering dynamic characteristics of natural gas pipelines. The method can obtain a result of the dynamic state estimation of the natural gas network by establishing an objective function of the dynamic state estimation of the natural gas network, a state quantity constraint of a compressor, a state quantity constraint of the natural gas pipeline and a topological constraint of the natural gas network, and using a Lagrange method or an interior point method to solve a state estimation model of the natural gas network. The method takes the topological constraint of the natural gas network into consideration, and employs a pipeline pressure constraint in a frequency domain to implement linearization of the pipeline pressure constraint, thereby obtain a real-time, reliable, consistent and complete dynamic operating state of the natural gas network.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 30, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Hongbin Sun, Qinglai Guo, Bin Wang, Guanxiong Yin, Zhaoguang Pan, Binbin Chen
  • Publication number: 20220405449
    Abstract: A heat supply network hydraulic circuit modeling method for a comprehensive energy system scheduling is provided. The hydraulic analysis model is unified with the power network model, and the connection between the hydraulic dynamic state and the hydraulic steady state is established. Based on the characteristic equations of thermal pipelines, flow control valves and compressors, this method abstracts hydraulic circuit element models such as hydraulic resistance, hydraulic inductance, and hydraulic pressure source, establishes hydraulic branch characteristics of the heat supply network based on the above hydraulic circuit elements, establishes the hydraulic topology constraints of the heat supply network based on Kirchhoff-like voltage and current laws, and establishes the steady hydraulic network equation by combining the above hydraulic branch characteristics and hydraulic topology constraints.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 22, 2022
    Inventors: Hongbin SUN, Qinglai GUO, Bin WANG, Binbin CHEN, Zhaoguang PAN, Wenchuan WU
  • Publication number: 20220390914
    Abstract: An optimal scheduling method of an electricity-heat multi-energy flow system based on a heat supply phasor model is provided. The method considers a mutual influence of the electricity-heat system, establishes a constraint equation of a heat supply system in a phasor form, considers dynamic characteristics of the heat supply system, and realizes an optimal scheduling of the electricity-heat multi-energy flow system.
    Type: Application
    Filed: August 11, 2022
    Publication date: December 8, 2022
    Inventors: Hongbin SUN, Qinglai GUO, Bin WANG, Yuwei CHEN, Zhaoguang PAN
  • Publication number: 20220358264
    Abstract: A natural gas circuit modeling method for operation control of an integrated energy system, including: establishing, based on the mass conservation and momentum conservation equations in the natural gas pipeline, as well as the state equation and the flow equation of the natural gas, a partial differential equation between the flow rate and the pressure in the natural gas pipeline; mapping the gas circuit to the frequency domain through Fourier transform and obtaining the lumped parameter model through the two-port equivalence; establishing, combined with the natural gas compressor equation, the general branch model of the natural gas circuit; defining the node-branch correlation matrix and the node-outflow branch correlation matrix to establish the topological constraint equation of the natural gas circuit; and establishing, combined with the general branch model of the natural gas circuit and the topological constraint equation of the natural gas circuit, the natural gas circuit equation.
    Type: Application
    Filed: July 15, 2022
    Publication date: November 10, 2022
    Inventors: Hongbin SUN, Qinglai GUO, Bin WANG, Binbin CHEN, Zhaoguang PAN, Yuwei CHEN, Xingtao TIAN, Wenchuan WU
  • Patent number: 11415952
    Abstract: The disclosure provides a method, an apparatus, and a storage medium for controlling a heating system in a combined heat and power system. The method includes: establishing a load flow model of the heating system, in which the heating system includes pipelines and nodes; the nodes include loads and heating sources; the load flow model includes an objective function and constraints; the objective function for maximizing and minimizing an inlet water temperature of each load or each source; solving the load flow model to obtain an upper limit and a lower limit of the inlet water temperature of each load or each source; and controlling the inlet water temperature of each load or each source based on the upper limit and the lower limit of the inlet water temperature of each load or each source.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: August 16, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Hongbin Sun, Qinglai Guo, Bin Wang, Guanxiong Yin, Tongtian Sheng, Zhaoguang Pan
  • Patent number: 11262713
    Abstract: A method for calculating control parameters of a heating supply power of a heating network, pertaining to the technical field of operation and control of a power system containing multiple types of energy. The method: establishing a heating network simulation model that simulates a thermal dynamic process of the heating network; starting an upward simulation based on the heating network simulation model to obtain first control parameters from a set of up adjustment amounts; starting a downward simulation based on the heating network simulation model, to obtain second control parameters from a set of down adjustment amounts.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: March 1, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Hongbin Sun, Qinglai Guo, Bin Wang, Zhaoguang Pan
  • Publication number: 20220006292
    Abstract: A power system dispatching method considering voltage sensitive load reserve is provided, with which a power system dispatching model constituted by a ground state operating point model of the power system, an evaluation model of the voltage sensitive load regulation range and an optimization objective of power system dispatch is established, by solving the power system dispatching model, a power system dispatching solution considering voltage sensitive load reserve is obtained.
    Type: Application
    Filed: May 27, 2021
    Publication date: January 6, 2022
    Inventors: Bin WANG, Haoran YU, Hongbin SUN, Zijin LI, Qinglai GUO, Cunping WANG, Zhaoguang PAN, Yifan SONG, Xingtao TIAN
  • Publication number: 20210365619
    Abstract: Provided is a method for a dynamic state estimation of a natural gas network considering dynamic characteristics of natural gas pipelines. The method can obtain a result of the dynamic state estimation of the natural gas network by establishing an objective function of the dynamic state estimation of the natural gas network, a state quantity constraint of a compressor, a state quantity constraint of the natural gas pipeline and a topological constraint of the natural gas network, and using a Lagrange method or an interior point method to solve a state estimation model of the natural gas network. The method takes the topological constraint of the natural gas network into consideration, and employs a pipeline pressure constraint in a frequency domain to implement linearization of the pipeline pressure constraint, thereby obtain a real-time, reliable, consistent and complete dynamic operating state of the natural gas network.
    Type: Application
    Filed: May 18, 2021
    Publication date: November 25, 2021
    Inventors: Hongbin Sun, Qinglai Guo, Bin Wang, Guanxiong Yin, Zhaoguang Pan, Binbin Chen
  • Publication number: 20210141405
    Abstract: The disclosure provides a method, an apparatus, and a storage medium for controlling heating system. The method includes: establishing an objective function and constraints for estimating system parameters of the heating system, in which the heating system includes nodes, pipelines and equivalent branches, the equivalent branch is configured to represent a heating resource or a heating load in the heating system, the system parameters include a resistance coefficient of each of the pipelines and equivalent branches, and a heat dissipation coefficient of each of the pipelines; solving the objective function based on the constraints to obtain the system parameters; modeling the heating system based on the obtained system parameters to obtain control parameters of the heating system; and controlling the heating system based on the control parameters.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Inventors: Hongbin SUN, Qinglai GUO, Bin WANG, Guanxiong YIN, Tongtian SHENG, Zhaoguang PAN
  • Publication number: 20210132558
    Abstract: The disclosure provides a method, an apparatus, and a storage medium for controlling a heating system in a combined heat and power system. The method includes: establishing a load flow model of the heating system, in which the heating system includes pipelines and nodes; the nodes include loads and heating sources; the load flow model includes an objective function and constraints; the objective function for maximizing and minimizing an inlet water temperature of each load or each source; solving the load flow model to obtain an upper limit and a lower limit of the inlet water temperature of each load or each source; and controlling the inlet water temperature of each load or each source based on the upper limit and the lower limit of the inlet water temperature of each load or each source.
    Type: Application
    Filed: January 12, 2021
    Publication date: May 6, 2021
    Inventors: Hongbin SUN, Qinglai GUO, Bin WANG, Guanxiong YIN, Tongtian SHENG, Zhaoguang PAN
  • Publication number: 20200233386
    Abstract: A method for calculating control parameters of a heating supply power of a heating network, pertaining to the technical field of operation and control of a power system containing multiple types of energy. The method: establishing a heating network simulation model that simulates a thermal dynamic process of the heating network; starting an upward simulation based on the heating network simulation model to obtain first control parameters from a set of up adjustment amounts; starting a downward simulation based on the heating network simulation model, to obtain second control parameters from a set of down adjustment amounts.
    Type: Application
    Filed: April 7, 2020
    Publication date: July 23, 2020
    Inventors: Hongbin SUN, Qinglai GUO, Bin WANG, Zhaoguang PAN