Patents by Inventor Zhaolin Lu

Zhaolin Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8983251
    Abstract: An apparatus with either a graphene sheet or an epsilon-near-zero layer sandwiched in a waveguide structure and a tuning device. The tuning device is configured to selectively control application of at least first and second gate voltages across the waveguide structure. The graphene sheet has a first dielectric constant which is zero and the waveguide structure operates at a first absorption state and a first propagation distance with application of the first voltage by the tuning device and has a second dielectric constant and the waveguide structure operates at a second absorption state and a second propagation distance with application of the second voltage. The second dielectric constant is larger than the first dielectric constant, the second absorption state is smaller than the first absorption state, the second propagation distance is longer than the first propagation distance, and the second voltage which is zero or smaller than the first voltage.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 17, 2015
    Assignee: Rochester Institute of Technology
    Inventors: Zhaolin Lu, Wangshi Zhao
  • Publication number: 20140023321
    Abstract: An apparatus with either a graphene sheet or an epsilon-near-zero layer sandwiched in a waveguide structure and a tuning device. The tuning device is configured to selectively control application of at least first and second gate voltages across the waveguide structure. The graphene sheet has a first dielectric constant which is zero and the waveguide structure operates at a first abosrpotion state and a first propagation distance with application of the first voltage by the tuning device and has a second dielectric constant and the waveguide structure operates at a second absorption state and a second propagation distance with application of the second voltage. The second dielectric constant is larger than the first dielectric constant, the second absorption state is smaller than the first absorption state, the second propagation distance is longer than the first propagation distance, and the second voltage which is zero or smaller than the first voltage.
    Type: Application
    Filed: December 10, 2012
    Publication date: January 23, 2014
    Inventors: Zhaolin Lu, Wangshi Zhao
  • Patent number: 8346039
    Abstract: A nanofocusing system includes a dielectric waveguide having two opposing ends; and a metal-dielectric-metal layered waveguide having two opposing ends optically aligned at one end with one end of the dielectric waveguide, wherein the metal-dielectric-metal waveguide tapers in at least one dimension from the aligned end of the metal-dielectric-metal waveguide towards the opposing end, wherein light travelling through the dielectric waveguide is funneled into the dielectric layer of the metal-dielectric-metal waveguide, squeezed by the metal-dielectric-metal waveguide taper, and exits the metal-dielectric-metal waveguide as nanofocused light.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 1, 2013
    Assignee: Rochester Institute of Technology
    Inventors: Zhaolin Lu, Ruoxi Yang
  • Patent number: 7718953
    Abstract: Described herein are electromagnetic traps or tweezers. Desired results are achieved by combining two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers. The very unique advantages of using 3DNRFLs for electromagnetic traps have been demonstrated. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: May 18, 2010
    Assignee: University of Delaware
    Inventors: Dennis W. Prather, Zhaolin Lu, Janusz Murakowski, Shouyuan Shi, Garrett Schneider
  • Publication number: 20100111475
    Abstract: A nanofocusing system includes a dielectric waveguide having two opposing ends; and a metal-dielectric-metal layered waveguide having two opposing ends optically aligned at one end with one end of the dielectric waveguide, wherein the metal-dielectric-metal waveguide tapers in at least one dimension from the aligned end of the metal-dielectric-metal waveguide towards the opposing end, wherein light travelling through the dielectric waveguide is funneled into the dielectric layer of the metal-dielectric-metal waveguide, squeezed by the metal-dielectric-metal waveguide taper, and exits the metal-dielectric-metal waveguide as nanofocused light.
    Type: Application
    Filed: November 5, 2009
    Publication date: May 6, 2010
    Applicant: ROCHESTER INSTITUTE OF TECHNOLOGY
    Inventors: Zhaolin LU, Ruoxi YANG
  • Patent number: 7428358
    Abstract: An optical coupler for parallel coupling from a single mode optical fiber, or fiber ribbon, into a silicon-on-insulator (SOI) waveguide for integration with silicon optoelectronic circuits. The optical coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The optical coupler may be fabricated using wafer polishing technology or grayscale photolithography. The optical coupler can be packaged using epoxy bonding to form a fiber-waveguide parallel coupler or connector.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: September 23, 2008
    Assignee: University of Delaware
    Inventors: Zhaolin Lu, Dennis W. Prather
  • Publication number: 20070285803
    Abstract: Described herein are electromagnetic traps or tweezers. Desired results are achieved by combining two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers. The very unique advantages of using 3DNRFLs for electromagnetic traps have been demonstrated. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens.
    Type: Application
    Filed: April 12, 2007
    Publication date: December 13, 2007
    Inventors: Dennis Prather, Zhaolin Lu, Janusz Murakowski, Shouyuan Shi, Garrett Schneider
  • Publication number: 20070031088
    Abstract: An optical coupler for parallel coupling from a single mode optical fiber, or fiber ribbon, into a silicon-on-insulator (SOI) waveguide for integration with silicon optoelectronic circuits. The optical coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The optical coupler may be fabricated using wafer polishing technology or grayscale photolithography. The optical coupler can be packaged using epoxy bonding to form a fiber-waveguide parallel coupler or connector.
    Type: Application
    Filed: January 14, 2005
    Publication date: February 8, 2007
    Applicant: University Of Delaware
    Inventor: Zhaolin LU