Patents by Inventor Zhaolu XIA

Zhaolu XIA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240019180
    Abstract: A radiative cooling film and a product thereof are provided. The radiative cooling film includes a carrier layer, a reflective layer and an emissive layer stacked together. A light shines on the radiative cooling film from the emissive layer. The emissive layer includes a polymer containing a C—F bond. The carrier layer includes a polymer containing at least one of a C—C bond and a C—O bond. After disposing at 120 degrees centigrade for 30 minutes, a transverse direction heat-shrinkage rate of the carrier layer is less than or equal to 2%, and a machine direction heat-shrinkage rate of the carrier layer is less than or equal to 3%. A thickness of the radiative cooling film is in a range of 50 ?m to 170 ?m, and a thickness of the emissive layer accounts for 20% to 90% of the thickness of the radiative cooling film.
    Type: Application
    Filed: March 1, 2021
    Publication date: January 18, 2024
    Inventors: Shaoyu XU, Ronggui YANG, Song ZHONG, Minghui WANG, Zhengjie YIN, Huihui YANG, Zhaolu XIA
  • Patent number: 11867434
    Abstract: A radiative cooling film and a product thereof are provided. The radiative cooling film includes a carrier layer, a reflective layer and an emissive layer stacked together. A light shines on the radiative cooling film from the emissive layer. The emissive layer includes a polymer containing a C—F bond. The carrier layer includes a polymer containing at least one of a C—C bond and a C—O bond. After disposing at 120 degrees centigrade for 30 minutes, a transverse direction heat-shrinkage rate of the carrier layer is less than or equal to 2%, and a machine direction heat-shrinkage rate of the carrier layer is less than or equal to 3%. A thickness of the radiative cooling film is in a range of 50 m to 170 ?m, and a thickness of the emissive layer accounts for 20% to 90% of the thickness of the radiative cooling film.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: January 9, 2024
    Assignees: NINGBO RADI-COOL ADVANCED ENERGY TECHNOLOGIES CO., LTD., NINGBO RUILING ADVANCED ENERGY MATERIALS INSTITUTE CO., LTD.
    Inventors: Shaoyu Xu, Ronggui Yang, Song Zhong, Minghui Wang, Zhengjie Yin, Huihui Yang, Zhaolu Xia
  • Patent number: 11833780
    Abstract: The present disclosure provides a radiative cooling metal plate, a preparation method and application thereof. The radiative cooling metal plate includes a metal substrate, a first adhesive layer and a radiative cooling functional layer stacked in order, the radiative cooling functional layer is located on a surface of the metal substrate, the first adhesive layer is arranged between the metal substrate and the radiative cooling functional layer, and an elongation at break of the radiative cooling functional layer is in a range of 1% to 300%. The radiative cooling functional layer can have sufficient ductility, and can have sufficient deformation to cope with the bending of the radiative cooling functional layer during pressing, such that the radiative cooling functional layer will not be damaged or broken, thereby ensuring the structural integrity of the radiative cooling functional layer and great radiative cooling effect of the metal substrate.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: December 5, 2023
    Assignees: NINGBO RADI-COOL ADVANCED ENERGY TECHNOLOGIES CO., LTD., NINGBO RUILING ADVANCED ENERGY MATERIALS INSTITUTE CO., LTD.
    Inventors: Ronggui Yang, Shaoyu Xu, Zhixiong Chen, Minghui Wang, Huihui Yang, Zhaolu Xia, Peng Cao
  • Publication number: 20230150242
    Abstract: The present disclosure provides a radiative cooling metal plate, a preparation method and application thereof. The radiative cooling metal plate includes a metal substrate, a first adhesive layer and a radiative cooling functional layer stacked in order, the radiative cooling functional layer is located on a surface of the metal substrate, the first adhesive layer is arranged between the metal substrate and the radiative cooling functional layer, and an elongation at break of the radiative cooling functional layer is in a range of 1% to 300%. The radiative cooling functional layer can have sufficient ductility, and can have sufficient deformation to cope with the bending of the radiative cooling functional layer during pressing, such that the radiative cooling functional layer will not be damaged or broken, thereby ensuring the structural integrity of the radiative cooling functional layer and great radiative cooling effect of the metal substrate.
    Type: Application
    Filed: April 29, 2020
    Publication date: May 18, 2023
    Inventors: Ronggui YANG, Shaoyu XU, Zhixiong CHEN, Minghui WANG, Huihui YANG, Zhaolu XIA, Peng CAO