Patents by Inventor Zhaoting Ye

Zhaoting Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135173
    Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
    Type: Application
    Filed: June 27, 2023
    Publication date: April 25, 2024
    Inventors: Yilin Yang, Bala Siva Sashank Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Publication number: 20230334317
    Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN.
    Type: Application
    Filed: June 20, 2023
    Publication date: October 19, 2023
    Inventors: Junghyun Kwon, Yilin Yang, Bala Siva Sashank Jujjavarapu, Zhaoting Ye, Sangmin Oh, Minwoo Park, David Nister
  • Patent number: 11790230
    Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: October 17, 2023
    Assignee: NVIDIA Corporation
    Inventors: Yilin Yang, Bala Siva Sashank Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Patent number: 11769052
    Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: September 26, 2023
    Assignee: NVIDIA Corporation
    Inventors: Junghyun Kwon, Yilin Yang, Bala Siva Sashank Jujjavarapu, Zhaoting Ye, Sangmin Oh, Minwoo Park, David Nister
  • Patent number: 11704890
    Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: July 18, 2023
    Assignee: NVIDIA Corporation
    Inventors: Yilin Yang, Bala Siva Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Publication number: 20220253706
    Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 11, 2022
    Inventors: Yilin Yang, Bala Siva Sashank Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Patent number: 11308338
    Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: April 19, 2022
    Assignee: NVIDIA Corporation
    Inventors: Yilin Yang, Bala Siva Sashank Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Publication number: 20220108465
    Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
    Type: Application
    Filed: November 9, 2021
    Publication date: April 7, 2022
    Inventors: Yilin Yang, Bala Siva Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Publication number: 20220019893
    Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 20, 2022
    Inventors: Junghyun Kwon, Yilin Yang, Bala Siva Sashank Jujjavarapu, Zhaoting Ye, Sangmin Oh, Minwoo Park, David Nister
  • Patent number: 11182916
    Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: November 23, 2021
    Assignee: NVIDIA Corporation
    Inventors: Yilin Yang, Bala Siva Sashank Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Patent number: 11170299
    Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: November 9, 2021
    Assignee: NVIDIA CORPORATION
    Inventors: Junghyun Kwon, Yilin Yang, Bala Siva Sashank Jujjavarapu, Zhaoting Ye, Sangmin Oh, Minwoo Park, David Nister
  • Publication number: 20210272304
    Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
    Type: Application
    Filed: December 27, 2019
    Publication date: September 2, 2021
    Inventors: Yilin Yang, Bala Siva Sashank Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister
  • Publication number: 20210241004
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Publication number: 20210241005
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Patent number: 10997435
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: May 4, 2021
    Assignee: NVIDIA Corporation
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Publication number: 20210042535
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 11, 2021
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Publication number: 20200218979
    Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 9, 2020
    Inventors: Junghyun Kwon, Yilin Yang, Bala Siva Sashank Jujjavarapu, Zhaoting Ye, Sangmin Oh, Minwoo Park, David Nister
  • Publication number: 20200210726
    Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Yilin Yang, Bala Siva Sashank Jujjavarapu, Pekka Janis, Zhaoting Ye, Sangmin Oh, Minwoo Park, Daniel Herrera Castro, Tommi Koivisto, David Nister