Patents by Inventor Zhaozhong Jiang

Zhaozhong Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109877
    Abstract: The present invention provides for compounds of formula (I) wherein R1, R2, R3, R4A, R4b, and R5, are as defined herein, and pharmaceutically acceptable salts thereof, that are useful as agents in the treatment of CLL.
    Type: Application
    Filed: March 21, 2023
    Publication date: April 4, 2024
    Inventors: Zhiguo Bian, Jason P. Burke, Zhaozhong J. Jia, Xingyu Jiang, Matthew H. Katcher, Venkat Reddy Mali, Violeta L. Marin, Elizabeth L. Noey, Akinori Okano, Alexey A. Rivkin, Spencer O. Scholz, Kevin R. Woller, Xianrui Zhao, Ashley M. Adams, Berenger Biannic, Shahab Mortezaei, Joshua N. Payette, Jeffery A. Zablocki
  • Patent number: 11766400
    Abstract: Biodegradable contraceptive implants and methods of making and using thereof, are preferably formed of poly(?-pentadecalactone-co-p-dioxanone) [poly(PDL-co-DO)], a family of polyester copolymers that degrade slowly in the presence of water. The material is suitable as the basis of a biodegradable contraceptive implant that provides sustained release of a progestin at a rate similar to a commercially available nondegradable implant. In a preferred embodiment, the progestin is levonorgestrel (LNG), a hormone that prevents pregnancy by preventing the release of an egg from the ovary or by preventing fertilization of the egg by sperm. The implant may be inserted subcutaneously, allowing degradation over a period of up to about 18 or 24 months, eliminating the need for removal by a trained practitioner.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: September 26, 2023
    Assignees: YALE UNIVERSITY, FAMILY HEALTH INTERNATIONAL
    Inventors: W. Mark Saltzman, Elias Quijano, Fan Yang, Zhaozhong Jiang, Derek Owen
  • Patent number: 10682422
    Abstract: Poly(amine-co-ester-co-ortho ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control or other transfection reagents.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: June 16, 2020
    Assignee: Yale University
    Inventors: W. Mark Saltzman, Junwei Zhang, Jiangbing Zhou, Zhaozhong Jiang
  • Publication number: 20200054553
    Abstract: Biodegradable contraceptive implants and methods of making and using thereof, are preferably formed of poly(?-pentadecalactone-co-p-dioxanone) [poly(PDL-co-DO)], a family of polyester copolymers that degrade slowly in the presence of water. The material is suitable as the basis of a biodegradable contraceptive implant that provides sustained release of a progestin at a rate similar to a commercially available nondegradable implant. In a preferred embodiment, the progestin is levonorgestrel (LNG), a hormone that prevents pregnancy by preventing the release of an egg from the ovary or by preventing fertilization of the egg by sperm. The implant may be inserted subcutaneously, allowing degradation over a period of up to about 18 or 24 months, eliminating the need for removal by a trained practitioner.
    Type: Application
    Filed: October 24, 2017
    Publication date: February 20, 2020
    Inventors: W. Mark Saltzman, Elias Quijano, Fan Yang, Zhaozhong Jiang, Derek Owen
  • Patent number: 9895451
    Abstract: Polyamine-co-ester-co-ortho ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control or other transfection reagents.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: February 20, 2018
    Assignee: Yale University
    Inventors: W. Mark Saltzman, Junwei Zhang, Jiangbing Zhou, Zhaozhong Jiang
  • Publication number: 20170360959
    Abstract: Poly(amine-co-ester-co-ortho ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control or other transfection reagents.
    Type: Application
    Filed: November 18, 2015
    Publication date: December 21, 2017
    Inventors: W. Mark SALTZMAN, Junwei ZHANG, Jiangbing ZHOU, Zhaozhong JIANG
  • Publication number: 20170121454
    Abstract: Poly(amine-co-ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the nanoparticles are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition.
    Type: Application
    Filed: October 24, 2016
    Publication date: May 4, 2017
    Inventors: W. MARK SALTZMAN, ZHAOZHONG JIANG, JIANGBING ZHOU, JIE LIU
  • Patent number: 9567430
    Abstract: Poly(amine-co-ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the nanoparticles are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: February 14, 2017
    Assignee: Yale University
    Inventors: W. Mark Saltzman, Zhaozhong Jiang, Jiangbing Zhou, Jie Liu
  • Publication number: 20160251478
    Abstract: Poly(amine-co-ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the nanoparticles are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition.
    Type: Application
    Filed: January 5, 2016
    Publication date: September 1, 2016
    Inventors: W. MARK SALTZMAN, ZHAOZHONG JIANG, JIANGBING ZHOU, JIE LIU
  • Patent number: 9272043
    Abstract: Poly(amine-co-ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the nanoparticles are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: March 1, 2016
    Assignee: Yale University
    Inventors: W. Mark Saltzman, Zhaozhong Jiang, Jiangbing Zhou, Jie Liu
  • Publication number: 20150073041
    Abstract: Polyamine-co-ester-co-ortho ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control or other transfection reagents.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: W. Mark Saltzman, Junwei Zhang, Jiangbing Zhou, Zhaozhong Jiang
  • Publication number: 20140342003
    Abstract: Poly(amine-co-ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the nanoparticles are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition.
    Type: Application
    Filed: June 2, 2014
    Publication date: November 20, 2014
    Inventors: W. Mark Saltzman, Zhaozhong Jiang, Jiangbing Zhou
  • Patent number: 7704379
    Abstract: The present invention relates to a process for converting Fischer-Tropsch wax to high quality lube basestocks using a molecular sieve Beta catalyst followed by a unidimensional intermediate pore molecular sieve with near circular pore structures having an average diameter of 0.50 nm to 0.65 nm wherein the difference between the maximum diameter and the minimum is ?0.05 nm. Both catalysts comprise one or more Group VIII metals. For example, a cascaded two-bed catalyst system consisting of a first bed Pt/Beta catalyst followed by a second bed Pt/ZSM-48 catalyst is highly selective for wax isomerization and lube hydrodewaxing with minimal gas formation.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: April 27, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Zhaozhong Jiang, Terry Eugene Helton, Randall David Partridge, Larry E. Hoglen
  • Patent number: 7504527
    Abstract: An integrated process for the production of a dialkyl carbonate and a diol from an alkylene oxide, carbon dioxide and an aliphatic monohydric alcohol is described in which an alkylene oxide is first reacted with carbon dioxide in the presence of a halogen-free carbonation catalyst to provide a corresponding cyclic carbonate and the cyclic carbonate is then reacted with an aliphatic monohydric alcohol in the presence of the carbonation catalyst and/or a transesterification catalyst and recycling the carbonation catalyst to provide a corresponding dialkyl carbonate and diol, wherein the dialkyl carbonate product exhibits a halogen concentration of about 5 ppm or less.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: March 17, 2009
    Assignee: Badger Licensing, LLC
    Inventors: Richard H. Schlosberg, J. Scott Buchanan, Jose Guadalupe Santiesteban, Zhaozhong Jiang, William A. Weber
  • Patent number: 7491837
    Abstract: An integrated process for the production of a dialkyl carbonate and a diol from an alkylene oxide, carbon dioxide and an aliphatic monohydric alcohol is described in which an alkylene oxide is first reacted with carbon dioxide in the presence of a halogen-free carbonation catalyst to provide a corresponding cyclic carbonate and the cyclic carbonate is then reacted with an aliphatic monohydric alcohol in the presence of the carbonation catalyst and/or a transesterification catalyst and recycling the carbonation catalyst to provide a corresponding dialkyl carbonate and diol, wherein the dialkyl carbonate product exhibits a halogen concentration of about 5 ppm or less.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: February 17, 2009
    Assignee: Badger Licensing LLC.
    Inventors: Richard H. Schlosberg, J. Scott Buchanan, Jose Guadalupe Santiesteban, Zhaozhong Jiang, William A. Weber
  • Patent number: 7453007
    Abstract: A process for the production of a dialkyl carbonate and a diol, such as dimethyl carbonate and ethylene glycol, by reacting a feed containing a cyclic carbonate, a hydroxy alkyl carbonate and an aliphatic monohydric alcohol in the presence of a transesterification catalyst is described. In another aspect, a process is described which is particularly useful for producing unsymmetric dialkyl carbonates, such as ethyl methyl carbonate.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: November 18, 2008
    Assignee: Badger Licensing, LLC
    Inventors: J. Scott Buchanan, Zhaozhong Jiang, Jose Guadalupe Santiesteban, William A. Weber
  • Patent number: 7145029
    Abstract: An integrated process for the production of a dialkyl carbonate and a diol from an alkylene oxide, carbon dioxide and an aliphatic monohydric alcohol is described in which an alkylene oxide is first reacted with carbon dioxide in the presence of a halogen-free carbonation catalyst to provide a corresponding cyclic carbonate and the cyclic carbonate is then reacted with an aliphatic monohydric alcohol in the presence of the carbonation catalyst and/or a transesterification catalyst and recycling the carbonation catalyst to provide a corresponding dialkyl carbonate and diol, wherein the dialkyl carbonate product exhibits a halogen concentration of about 5 ppm or less.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: December 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard H. Schlosberg, J. Scott Buchanan, Jose Guadalupe Santiesteban, Zhaozhong Jiang, William A. Weber
  • Patent number: 7084292
    Abstract: An integrated process for the production of a dialkyl carbonate and a diol from an alkylene oxide, carbon dioxide and an aliphatic monohydric alcohol is described in which an alkylene oxide is first reacted with carbon dioxide in the presence of a homogeneous carbonation catalyst to provide a corresponding cyclic carbonate and the cyclic carbonate is then reacted with an aliphatic monohydric alcohol in the presence of the homogeneous carbonation catalyst and/or a heterogeneous transesterification catalyst and recycling the homogeneous carbonation catalyst to provide a corresponding dialkyl carbonate and diol.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: August 1, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: J. Scott Buchanan, Zhaozhong Jiang, Jose G. Santiesteban, William A. Weber
  • Publication number: 20060086643
    Abstract: The present invention relates to a process for converting Fischer-Tropsch wax to high quality lube basestocks using a molecular sieve Beta catalyst followed by a unidimensional intermediate pore molecular sieve with near circular pore structures having an average diameter of 0.50 nm to 0.65 nm wherein the difference between the maximum diameter and the minimum is ?0.05 nm. Both catalysts comprise one or more Group VIII metals. For example, a cascaded two-bed catalyst system consisting of a first bed Pt/Beta catalyst followed by a second bed Pt/ZSM-48 catalyst is highly selective for wax isomerization and lube hydrodewaxing with minimal gas formation.
    Type: Application
    Filed: December 9, 2005
    Publication date: April 27, 2006
    Inventors: Zhaozhong Jiang, Terry Helton, Randall Partridge, Larry Hoglen
  • Publication number: 20050234258
    Abstract: A process for the production of a dialkyl carbonate and a diol, such as dimethyl carbonate and ethylene glycol, by reacting a feed containing a cyclic carbonate, a hydroxy alkyl carbonate and an aliphatic monohydric alcohol in the presence of a transesterification catalyst is described. In another aspect, a process is described which is particularly useful for producing unsymmetric dialkyl carbonates, such as ethyl methyl carbonate.
    Type: Application
    Filed: June 9, 2005
    Publication date: October 20, 2005
    Inventors: J. Buchanan, Zhaozhong Jiang, Jose Santiesteban, William Weber