Patents by Inventor Zhebo Chen

Zhebo Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12237475
    Abstract: The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: February 25, 2025
    Assignee: QuantumScape Battery, Inc.
    Inventors: David Cao, Cheng-Chieh Chao, Zhebo Chen, Lei Cheng, Niall Donnelly, Wes Hermann, Timothy Holme, Tommy Huang, Kian Kerman, Yang Li, Harsh Maheshwari
  • Publication number: 20250046600
    Abstract: One or more embodiments of the disclosure are directed to methods of forming structures that are useful for FEOL and BEOL processes. Embodiments of the present disclosure advantageously provide methods of depositing titanium nitride (TiN) in high aspect ratio (AR) structures with small dimensions. Some embodiments advantageously provide seam-free high-quality TiN films to fill high AR trenches with small dimensions. Embodiments of the present disclosure advantageously provide methods of filling 3D structures, such as finFETs, GAAs, and the like, without creating a seam. The methods include selective deposition processes using blocking compounds in order to provide seam-free TiN gapfill in 3D structures, such as GAA devices.
    Type: Application
    Filed: July 31, 2023
    Publication date: February 6, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Muthukumar Kaliappan, Zhebo Chen, Michael Haverty, Yongjing Lin, Shih Chung Chen, Gang Shen, Alexander Jansen, Janardhan Devrajan
  • Patent number: 12191198
    Abstract: Apparatus and methods to provide electronic devices comprising tungsten film stacks are provided. A tungsten liner formed by physical vapor deposition is filled with a tungsten film formed by chemical vapor deposition directly over the tungsten liner.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: January 7, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Feihu Wang, Joung Joo Lee, Xi Cen, Zhibo Yuan, Wei Lei, Kai Wu, Chunming Zhou, Zhebo Chen
  • Patent number: 12185643
    Abstract: A superconducting device includes a substrate, a metal oxide or metal oxynitride seed layer on the substrate, and a metal nitride superconductive layer disposed directly on the seed layer. The seed layer is an oxide or oxynitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Grant
    Filed: March 1, 2023
    Date of Patent: December 31, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Publication number: 20240387794
    Abstract: The present invention is directed to battery system and operation thereof. In an embodiment, lithium material is plated onto the anode region of a lithium secondary battery cell by a pulsed current. The pulse current may have both positive and negative polarity. One of the polarities causes lithium material to plate onto the anode region, and the opposite polarity causes lithium dendrites to be removed. There are other embodiments as well.
    Type: Application
    Filed: April 1, 2024
    Publication date: November 21, 2024
    Inventors: Timothy HOLME, Marie Mayer, Ghyrn Loveness, Zhebo Chen, Rainer Fasching
  • Patent number: 12142727
    Abstract: Provided herein are detect-free solid-state separators which are useful as Li| ion-conducting electrolytes in electro-chemical cells and devices, such as, but not limited to, rechargeable batteries. In some examples, the separators have a Li+ ion-conductivity greater than 1*10?3 S/cm at room temperature.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: November 12, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Cheng-Chieh Chao, Zhebo Chen, Lei Cheng, Niall Donnelly, Tim Holme, Tommy Huang, Sriram Iyer, Kian Kerman, Harsh Maheshwari, Jagdeep Singh, Gengfu Xu
  • Patent number: 12104243
    Abstract: Methods and apparatus for processing a substrate is provided herein. For example, a method for processing a substrate comprises depositing a silicide layer within a feature defined in a layer on a substrate, forming one of a metal liner layer or a metal seed layer atop the silicide layer within the feature via depositing at least one of molybdenum (Mo) or tungsten (W) using physical vapor deposition, and depositing Mo using at least one of chemical vapor deposition or atomic layer deposition atop the at least one of the metal liner layer or the metal seed layer, without vacuum break.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: October 1, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Jacqueline S. Wrench, Feihu Wang, Yixiong Yang, Joung Joo Lee, Srinivas Gandikota, Sang-heum Kim, Zhebo Chen, Gang Shen
  • Patent number: 12096701
    Abstract: A method of fabricating a device including a superconductive layer includes depositing a seed layer on a substrate, exposing the seed layer to an oxygen-containing gas or plasma to form a modified seed layer, and after exposing the seed layer to the oxygen-containing gas or plasma depositing a metal nitride superconductive layer directly on the modified seed layer. The seed layer is a nitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: September 17, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Patent number: 12057600
    Abstract: Provided herein are electrochemical cells having a solid separator, a lithium metal anode, and a positive electrode catholyte wherein the electrochemical cell includes a nitrile, dinitrile, or organic sulfur-including solvent and a lithium salt dissolved therein. Also set forth are methods of making and using these electrochemical cells.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: August 6, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Greg Roberts, Zhebo Chen, Will Hudson, Rainer Fasching, Tiffany Ho, Timothy P. Holme, Mohit Singh, Aram Yang
  • Patent number: 12052935
    Abstract: A method of fabricating a device including a superconductive layer includes depositing a seed layer on a substrate at a first temperature, the seed layer being a nitride of a first metal, reducing the temperature of the substrate to a second temperature that is lower than the first temperature, increasing the temperature of the substrate to a third temperature that is higher than the first temperature to form a modified seed layer, and depositing a metal nitride superconductive layer directly on the modified seed layer at the third temperature, the superconductive layer being a nitride of a different second metal.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: July 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Patent number: 12027690
    Abstract: The present invention is directed to battery system and operation thereof. In an embodiment, lithium material is plated onto the anode region of a lithium secondary battery cell by a pulsed current. The pulse current may have both positive and negative polarity. One of the polarities causes lithium material to plate onto the anode region, and the opposite polarity causes lithium dendrites to be removed. There are other embodiments as well.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: July 2, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Timothy Holme, Marie Mayer, Ghyrn Loveness, Zhebo Chen, Rainer Fasching
  • Publication number: 20240213519
    Abstract: Set forth herein are compositions comprising A·(LiBH4)·B·(LiX)·C·(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?B?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A·(LiBH4)·B·(LiX)·C·(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A·(LiBH4)·B·(LiX)·C·(LiNH2) compositions and other materials.
    Type: Application
    Filed: October 27, 2023
    Publication date: June 27, 2024
    Inventors: Zhebo CHEN, Timothy HOLME, Marier MAYER, Nick PERKINS, Eric TULSKY, Cheng-Chieh CHAO, Christopher DEKMEZIAN, Shuang LI
  • Publication number: 20240195015
    Abstract: Set forth herein are electrochemical cells which include a negative electrode current collector, a lithium metal negative electrode, an oxide electrolyte membrane, a bonding agent layer, a positive electrode, and a positive electrode current collector. The bonding agent layer advantageously lowers the interfacial impedance of the oxide electrolyte at least at the positive electrode interface and also optionally acts as an adhesive between the solid electrolyte separator and the positive electrode interface. Also set forth herein are methods of making these bonding agent layers including, but not limited to, methods of preparing and depositing precursor solutions which form these bonding agent layers. Set forth herein, additionally, are methods of using these electrochemical cells.
    Type: Application
    Filed: October 17, 2023
    Publication date: June 13, 2024
    Inventors: Zhebo CHEN, Niall DONNELLY, Timothy HOLME, Deepika SINGH
  • Patent number: 11984551
    Abstract: The present disclosure sets forth battery components for secondary and/or traction batteries. Described herein are new solid-state lithium (Li) conducting electrolytes including monolithic, single layer, and bi-layer solid-state sulfide-based lithium ion (Li+) conducting catholytes or electrolytes. These solid-state ion conductors have particular chemical compositions which are arranged and/or bonded through both crystalline and amorphous bonds. Also provided herein are methods of making these solid-state sulfide-based lithium ion conductors including new annealing methods. These ion conductors are useful, for example, as membrane separators in rechargeable batteries.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: May 14, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Tim Holme, Kim Van Berkel, William Hudson, Kian Kerman, Sunil Mair, Amal Mehrotra, Zhebo Chen
  • Patent number: 11955603
    Abstract: Set forth herein are electrolyte compositions that include both organic and inorganic constituent components and which are suitable for use in rechargeable batteries. Also set forth herein are methods and systems for making and using these composite electrolytes.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: April 9, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Kim Van Berkel, Tim Holme, Mohit Singh, Amal Mehrotra, Zhebo Chen, Kian Kerman, Wes Hermann, William Hudson
  • Patent number: 11916200
    Abstract: The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: February 27, 2024
    Inventors: David Cao, Cheng-Chieh Chao, Zhebo Chen, Lei Cheng, Niall Donnelly, Wes Hermann, Tim Holme, Tommy Huang, Kian Kerman, Yang Li, Harsh Maheshwari
  • Patent number: 11881596
    Abstract: Set forth herein are electrochemical cells which include a negative electrode current collector, a lithium metal negative electrode, an oxide electrolyte membrane, a bonding agent layer, a positive electrode, and a positive electrode current collector. The bonding agent layer advantageously lowers the interfacial impedance of the oxide electrolyte at least at the positive electrode interface and also optionally acts as an adhesive between the solid electrolyte separator and the positive electrode interface. Also set forth herein are methods of making these bonding agent layers including, but not limited to, methods of preparing and depositing precursor solutions which form these bonding agent layers. Set forth herein, additionally, are methods of using these electrochemical cells.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: January 23, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Zhebo Chen, Niall Donnelly, Tim Holme, Deepika Singh
  • Publication number: 20240006667
    Abstract: The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 4, 2024
    Inventors: David CAO, Cheng-Chieh CHAO, Zhebo CHEN, Lei CHENG, Niall DONNELLY, Wes Hermann, Timothy HOLME, Tommy HUANG, Kian KERMAN, Yang LI, Harsh MAHESHWARI
  • Publication number: 20240003000
    Abstract: A structure including a metal nitride layer is formed on a workpiece by pre-conditioning a chamber that includes a metal target by flowing nitrogen gas and an inert gas at a first flow rate ratio into the chamber and igniting a plasma in the chamber before placing the workpiece in the chamber, evacuating the chamber after the preconditioning, placing the workpiece on a workpiece support in the chamber after the preconditioning, and performing physical vapor deposition of a metal nitride layer on the workpiece in the chamber by flowing nitrogen gas and the inert gas at a second flow rate ratio into the chamber and igniting a plasma in the chamber. The second flow rate ratio is less than the first flow rate ratio.
    Type: Application
    Filed: May 23, 2023
    Publication date: January 4, 2024
    Inventors: Mingwei ZHU, Zihao YANG, Nag B. PATIBANDLA, Ludovic GODET, Yong CAO, Daniel Lee DIEHL, Zhebo CHEN
  • Patent number: 11855251
    Abstract: Set forth herein are compositions comprising A·(LiBH4)·B·(LiX)·C·(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?13?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A·(LiBH4)·B·(LiX)·C·(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A·(LiBH4)·B·(LiX)·C·(LiNH2) compositions and other materials.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: December 26, 2023
    Assignee: QUANTUMSCAPE BATTERY, INC.
    Inventors: Zhebo Chen, Tim Holme, Marie Mayer, Nick Perkins, Eric Tulsky, Cheng-Chieh Chao, Christopher Dekmezian, Shuang Li