Patents by Inventor Zhefeng Xu

Zhefeng Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12064814
    Abstract: Provided is a method of producing a composite having high strength and high thermal conductivity. The method includes: an alloy preparation step including preparing an alloy which is a solid solution containing ?-Fe as a solvent and at least one type of ?-phase stabilizing element as a solute; a first mixing step including mixing at least one type of ?-phase stabilizing element in powder form and SiC to prepare a first mixture; a second mixing step including mixing the alloy and the first mixture to prepare a second mixture; and a sintering step including sintering the second mixture.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: August 20, 2024
    Assignees: HIROSHIMA UNIVERSITY, Y-tec Corporation, KEYLEX CORPORATION, Mazda Motor Corporation
    Inventors: Kenjiro Sugio, Takuya Takahashi, Hitoshi Sawada, Gen Sasaki, Kazuhiro Matsugi, Yongbum Choi, Zhefeng Xu, Hajime Suetsugu, Hiroki Kondo, Hideki Manabe, Kyotaro Yamane, Kenichi Hatakeyama, Keizo Kawasaki, Tsuyoshi Itaoka, Shinsaku Seno, Yasushi Tamura, Ichirou Ino, Yoshihide Hirao
  • Patent number: 11858045
    Abstract: Provided is a Fe-based sintered body which has both of a high hardness and a high thermal conductivity and which can be more stably produced. The Fe-based sintered body includes: a matrix (1) containing Fe as a main component; and a hard phase (4) dispersed in the matrix (1). The matrix (1) is formed in a network shape and contains ?Fe. The hard phase (4) contains TiC.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: January 2, 2024
    Assignees: Hiroshima University, Y-tec Corporation, keylex corporation, Mazda Motor Corporation
    Inventors: Kazuhiro Matsugi, Yujiao Ke, Zhefeng Xu, Kenjiro Sugio, Yongbum Choi, Gen Sasaki, Hajime Suetsugu, Hiroki Kondo, Hideki Manabe, Kyotaro Yamane, Kenichi Hatakeyama, Keizo Kawasaki, Tsuyoshi Itaoka, Shinsaku Seno, Yasushi Tamura, Ichirou Ino, Yoshihide Hirao
  • Publication number: 20210316361
    Abstract: Provided is a method of producing a composite having high strength and high thermal conductivity. The method includes: an alloy preparation step including preparing an alloy which is a solid solution containing ?-Fe as a solvent and at least one type of ?-phase stabilizing element as a solute; a first mixing step including mixing at least one type of ?-phase stabilizing element in powder form and SiC to prepare a first mixture; a second mixing step including mixing the alloy and the first mixture to prepare a second mixture; and a sintering step including sintering the second mixture.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 14, 2021
    Inventors: Kenjiro SUGIO, Takuya TAKAHASHI, Hitoshi SAWADA, Gen SASAKI, Kazuhiro MATSUGI, Yongbum CHOI, Zhefeng XU, Hajime SUETSUGU, Hiroki KONDO, Hideki MANABE, Kyotaro YAMANE, Kenichi HATAKEYAMA, Keizo KAWASAKI, Tsuyoshi ITAOKA, Shinsaku SENO, Yasushi TAMURA, Ichirou INO, Yoshihide HIRAO
  • Publication number: 20210308756
    Abstract: Provided is a Fe-based sintered body which has both of a high hardness and a high thermal conductivity and which can be more stably produced. The Fe-based sintered body includes: a matrix (1) containing Fe as a main component; and a hard phase (4) dispersed in the matrix (1). The matrix (1) is formed in a network shape and contains ?Fe. The hard phase (4) contains TiC.
    Type: Application
    Filed: July 24, 2019
    Publication date: October 7, 2021
    Inventors: Kazuhiro MATSUGI, Yujiao KE, Zhefeng XU, Kenjiro SUGIO, Yongbum CHOI, Gen SASAKI, Hajime SUETSUGU, Hiroki KONDO, Hideki MANABE, Kyotaro YAMANE, Kenichi HATAKEYAMA, Keizo KAWASAKI, Tsuyoshi ITAOKA, Shinsaku SENO, Yasushi TAMURA, Ichirou INO, Yoshihide HIRAO
  • Patent number: 10640660
    Abstract: The invention relates to a coating for preventing intermetallic bonding, in particular to a water-based high-temperature-resistant titanium-steel anti-bonding coating and its use in the preparation process of titanium ingot. The water-based high-temperature-resistant titanium-steel anti-bonding coating of the invention includes the following components in parts by weight: 50-150 parts of water-based film-forming agent, 0-50 parts of Zn powder, 400-450 parts of Al2O3 powder, and 250-350 parts of talcum powder. The coating of the invention can avoid the bonding reaction with a roller or a winch of the steel equipment in the rolling or perforation process of a titanium tube at 900° C., so as to improve the yield and the production efficiency of titanium material processing. Moreover, the process is simple and easy to operate, the coating is environment-friendly and pollution-free, and easy to prepare.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: May 5, 2020
    Assignee: Pangang Group Research Institute Co., Ltd
    Inventors: Zhefeng Xu, Haoqing Zheng, Quan Xu, Cong Xiao, Jun Li
  • Publication number: 20190264041
    Abstract: The invention relates to a coating for preventing intermetallic bonding, in particular to a water-based high-temperature-resistant titanium-steel anti-bonding coating and its use in the preparation process of titanium ingot. The water-based high-temperature-resistant titanium-steel anti-bonding coating of the invention includes the following components in parts by weight: 50-150 parts of water-based film-forming agent, 0-50 parts of Zn powder, 400-450 parts of Al2O3 powder, and 250-350 parts of talcum powder. The coating of the invention can avoid the bonding reaction with a roller or a winch of the steel equipment in the rolling or perforation process of a titanium tube at 900° C., so as to improve the yield and the production efficiency of titanium material processing. Moreover, the process is simple and easy to operate, the coating is environment-friendly and pollution-free, and easy to prepare.
    Type: Application
    Filed: June 23, 2017
    Publication date: August 29, 2019
    Inventors: Zhefeng XU, Haoqing ZHENG, Quan XU, Cong XIAO, Jun LI
  • Patent number: 9181447
    Abstract: A metal protective coating is provided, which is obtained by mixing homogeneously a raw mixture, which contains water soluble silicate, promoter, silane coupling agent, silicon oxide packing, water soluble film formation resin, and water; wherein, the promoter is at least one selected from the group consisting of methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, carboxymethyl-hydroxyethyl cellulose, and their soluble salts; the silane coupling agent contains a first silane derivative shown in formula (1), wherein, R1, R2, and R3 are methoxyl or ethyoxyl respectively, and n is an integer with the range of 1-4. A hot-dip Zn metallic material and a hot-dip Al—Zn alloy metallic material are further provided. The protective film formed by the metal protective coating as provided has outstanding corrosion resistance, water resistance, thermal resistance, and fingerprint resistance properties.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 10, 2015
    Assignee: PANGANG GROUP PANZHIHUA IRON & STEEL RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhefeng Xu, Dongsheng Mei, Yong Chen, Quan Xu, Yan Lou, Yilin Zhou
  • Patent number: 8742000
    Abstract: A coating composition is provided, the starting materials of which comprise nano SiO2, film-forming substance, film-forming aid, accelerator, acid, and water. The composition has pH of 3-9. A passivated zinc-plated material is also provided. The zinc-plated material comprises zinc-plated substrate and passivated coat adhered to the surface of the zinc-plated substrate, wherein the passivated coat is formed by curing the coating composition. The coating composition can impart to the zinc-plated material excellent corrosion resistance, water resistance, high temperature resistance, surface conductivity, and adhesion to the zinc-plated substrate. Additionally, the coating composition contains no Cr6+, and satisfies the requirement of EU RoHS Directive.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: June 3, 2014
    Assignees: Pangang Group Steel Vanadium and Titanium Co., Ltd., Pangang Group Panzhihua Iron and Steel Research Institute Co., Ltd., Pangang Group Company Ltd., Pangang Group Research Institute Co., Ltd.
    Inventors: Zhefeng Xu, Dongsheng Mei, Taixiong Guo, Quan Xu, Yong Chen, Xingde Cheng, Guoan Li, Aiping Zhang
  • Patent number: 8728628
    Abstract: The present invention provides a passivant for hot-dip Al—Zn-coated sheet of which the raw materials include: 2˜6 parts by weight of water soluble molybdate, 4˜12 parts by weight of water soluble manganese salt, 50˜100 parts by weight of basic silica sol and 50˜100 parts by weight of water soluble organic resin. The present invention also provides a method to prepare the passivant for hot-dip Al—Zn-coated sheet including the following steps: adding and dissolving water soluble molybdate and water soluble manganese salt into deionized water; adding basic silica sol into the solution and mixing well; adding water soluble organic resin into the solution and mixing well; regulating the pH value of the solution to 5˜8 by using phosphoric acid. The present invention also provides a hot-dip Al—Zn-coated sheet treated with the present passivant and a method to passivate hot-dip Al—Zn-coated sheet.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: May 20, 2014
    Assignees: Pangang Group Steel Vanadium and Titanium Co., Ltd., Pangang Group Research Institute Co., Ltd., Pangang Group Panzhihua Iron & Steel Research Institute Co., Ltd.
    Inventors: Ping Yuan, Taixiong Guo, Quan Xu, Dan Yu, Yong Zhang, Zhefeng Xu, Yilin Zhou
  • Publication number: 20130078456
    Abstract: A metal protective coating is provided, which is obtained by mixing homogeneously a raw mixture, which contains water soluble silicate, promoter, silane coupling agent, silicon oxide packing, water soluble film formation resin, and water; wherein, the promoter is at least one selected from the group consisting of methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, carboxymethyl-hydroxyethyl cellulose, and their soluble salts; the silane coupling agent contains a first silane derivative shown in formula (1), wherein, R1, R2, and R3 are methoxyl or ethyoxyl respectively, and n is an integer with the range of 1-4. A hot-dip Zn metallic material and a hot-dip Al—Zn alloy metallic material are further provided. The protective film formed by the metal protective coating as provided has outstanding corrosion resistance, water resistance, thermal resistance, and fingerprint resistance properties.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 28, 2013
    Applicant: PanGang Group Panzhihua Iron & Steel Research Institute Co., Ltd.
    Inventors: Zhefeng Xu, Dongsheng Mei, Yong Chen, Quan Xu, Yan Lou, Yilin Zhou
  • Publication number: 20120135267
    Abstract: The present invention provides a passivant for hot-dip Al—Zn-coated sheet of which the raw materials include: 2˜6 parts by weight of water soluble molybdate, 4˜12 parts by weight of water soluble manganese salt, 50˜100 parts by weight of basic silica sol and 50˜100 parts by weight of water soluble organic resin. The present invention also provides a method to prepare the passivant for hot-dip Al—Zn-coated sheet including the following steps: adding and dissolving water soluble molybdate and water soluble manganese salt into deionized water; adding basic silica sol into the solution and mixing well; adding water soluble organic resin into the solution and mixing well; regulating the pH value of the solution to 5˜8 by using phosphoric acid. The present invention also provides a hot-dip Al—Zn-coated sheet treated with the present passivant and a method to passivate hot-dip Al—Zn-coated sheet.
    Type: Application
    Filed: April 7, 2010
    Publication date: May 31, 2012
    Inventors: Ping Yuan, Taixiong Guo, Quan Xu, Dan Yu, Yong Zhang, Zhefeng Xu, Yilin Zhou
  • Publication number: 20120052312
    Abstract: A coating composition is provided, the starting materials of which comprise nano SiO2, film-forming substance, film-forming aid, accelerator, acid, and water. The composition has pH of 3-9. A passivated zinc-plated material is also provided. The zinc-plated material comprises zinc-plated substrate and passivated coat adhered to the surface of the zinc-plated substrate, wherein the passivated coat is formed by curing the coating composition. The coating composition can impart to the zinc-plated material excellent corrosion resistance, water resistance, high temperature resistance, surface conductivity, and adhesion to the zinc-plated substrate. Additionally, the coating composition contains no Cr6+, and satisfies the requirement of EU RoHS Directive.
    Type: Application
    Filed: November 26, 2009
    Publication date: March 1, 2012
    Applicants: Pangang Group Steel Vanadium and Titanium Co., Ltd, Pangang Group Research Institute Co., Ltd., Pangang Group Company Ltd., Pangang Group Panzhihua Iron & Steel Research Institute Co., Ltd.
    Inventors: Zhefeng Xu, Dongsheng Mei, Taixiong Guo, Quan Xu, Yong Chen, Xingde Cheng, Guoan Li, Aiping Zhang