Patents by Inventor Zhen Chang LIANG

Zhen Chang LIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890342
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: February 6, 2024
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Nathaniel Park, Rudy J. Wojtecki, Yang Chuan, Ashlynn Lee, Zhen Chang Liang, Shaoqiong Liu, Yi Yan Yang
  • Patent number: 11766451
    Abstract: Techniques regarding treating one or more microbe infections with combination therapy are provided. For example, one or more embodiments described herein can comprise a method, which can comprise enhancing an antimicrobial activity of an antibiotic by a combination therapy. The combination therapy can comprise the antibiotic and a polycarbonate polymer functionalized with a guanidinium functional group.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: September 26, 2023
    Assignee: International Business Machines Corporation
    Inventors: James L Hedrick, Simone Bianco, Mark Kunitomi, Yi Yan Yang, Xin Ding, Chuan Yang, Zhen Chang Liang, Paola Florez de Sessions, Balamurugan Periaswamy
  • Patent number: 11572477
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: February 7, 2023
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, Institute of Bioengineering and Nanotechnology
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 11560484
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 24, 2023
    Assignees: International Business Machines Corporation, Institute of Bioengineering and Nanotechnology
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20220111115
    Abstract: There is provided a bone cement composition comprising: a powder component comprising at least one acrylic polymer a liquid component comprising a monomer; an antibiotic; and an acid-functionalised polymer, wherein reaction of the powder component and the liquid component results in formation of a bone cement. In a preferred embodiment, the acid-functionalised polymer is selected from polyethylene glycol-polycarbonate (PEG-PAC), polycarbonate-poly(L-lactide) (PAC-PLLA), polycarbonate-poly(D-lactide) (PAC-PDLA), PAC-PLLA/PDLA, copolymers thereof or a combination thereof. There is also provided a bone cement formed from the bone cement composition.
    Type: Application
    Filed: July 30, 2019
    Publication date: April 14, 2022
    Applicants: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH, NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Yi Yan YANG, Zhen Chang LIANG, Chuan YANG, Ee Jen Wilson WANG
  • Patent number: 11045552
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 29, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Yang Chuan, Ashlynn Lee, Zhen Chang Liang, Shaoqiong Liu, Yi Yan Yang
  • Publication number: 20210145970
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Application
    Filed: December 22, 2020
    Publication date: May 20, 2021
    Inventors: Dylan J. BODAY, Jeannette M. GARCIA, James L. HEDRICK, Nathaniel PARK, Rudy J. WOJTECKI, Yang CHUAN, Ashlynn LEE, Zhen Chang LIANG, Shaoqiong LIU, Yi Yan YANG
  • Publication number: 20210121498
    Abstract: Techniques regarding treating one or more microbe infections with combination therapy are provided. For example, one or more embodiments described herein can comprise a method, which can comprise enhancing an antimicrobial activity of an antibiotic by a combination therapy. The combination therapy can comprise the antibiotic and a polycarbonate polymer functionalized with a guanidinium functional group.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 29, 2021
    Inventors: James L. Hedrick, Simone Bianco, Mark Kunitomi, Yi Yan Yang, Xin Ding, Chuan Yang, Zhen Chang Liang, Paola Florez de Sessions, Balamurugan Periaswamy
  • Patent number: 10953039
    Abstract: Techniques regarding treating one or more microbe infections with combination therapy are provided. For example, one or more embodiments described herein can comprise a method, which can comprise enhancing an antimicrobial activity of an antibiotic by a combination therapy. The combination therapy can comprise the antibiotic and a polycarbonate polymer functionalized with a guanidinium functional group.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 23, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: James L. Hedrick, Simone Bianco, Mark Kunitomi, Yi Yan Yang, Xin Ding, Chuan Yang, Zhen Chang Liang, Paola Florez de Sessions, Balamurugan Periaswamy
  • Patent number: 10752787
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10745586
    Abstract: According to one or more embodiments, a method of making an antifouling coating includes forming a polythioaminal polymer by reacting a fluorinated primary amine with an aldehyde to form an intermediate imine, and then reacting the intermediate imine with a dithiol. The method further includes depositing the polythioaminal on a substrate, and increasing a temperature of the polythioaminal deposited on the substrate to crosslink the polythioaminal and increase a contact angle of the substrate with crosslinked polythioaminal.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: August 18, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10696849
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 30, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200101105
    Abstract: Techniques regarding treating one or more microbe infections with combination therapy are provided. For example, one or more embodiments described herein can comprise a method, which can comprise enhancing an antimicrobial activity of an antibiotic by a combination therapy. The combination therapy can comprise the antibiotic and a polycarbonate polymer functionalized with a guanidinium functional group.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: James L. Hedrick, Simone Bianco, Mark Kunitomi, Yi Yan Yang, Xin Ding, Chuan Yang, Zhen Chang Liang, Paola Florez de Sessions, Balamurugan Periaswamy
  • Publication number: 20200071542
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200071543
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200071541
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10563069
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 18, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, Institute of Bioengineering and Nanotechnology
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190048226
    Abstract: According to one or more embodiments, a method of making an antifouling coating includes forming a polythioaminal polymer by reacting a fluorinated primary amine with an aldehyde to form an intermediate imine, and then reacting the intermediate imine with a dithiol. The method further includes depositing the polythioaminal on a substrate, and increasing a temperature of the polythioaminal deposited on the substrate to crosslink the polythioaminal and increase a contact angle of the substrate with crosslinked polythioaminal.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190048208
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20180280515
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 4, 2018
    Inventors: Dylan J. BODAY, Jeannette M. GARCIA, James L. HEDRICK, Nathaniel H. PARK, Rudy J. WOJTECKI, Yang CHUAN, Ashlynn LEE, Zhen Chang LIANG, Shaoqiong LIU, Yi Yan YANG