Patents by Inventor Zheng Ni

Zheng Ni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230234890
    Abstract: A method is provided for calculating gaseous diffusion and oxidation evolution of a ceramic matrix composite (CMC) structure, which includes determining temperature and load distribution in a structural member; determining matrix crack distribution in the structure; establishing an equivalent diffusion coefficient model of a fiber bundle scale to predict a gas flow channel in a fiber bundle: averaging a total amount of gaseous diffusion in the channel to establish the equivalent diffusion coefficient model of the fiber bundle composite scale related to the matrix crack distribution; establishing a representative volume element (RVE) model; establishing an equivalent diffusion coefficient model of a RVE scale; calculating the distribution of the gas concentration and oxidation products in the structure; calculating a growth thickness of an oxide at cracks and pores in each element; and updating sealing conditions of the gas channel, and calculating a new equivalent diffusion coefficient field and the distribut
    Type: Application
    Filed: January 27, 2022
    Publication date: July 27, 2023
    Inventors: Xiguang GAO, Yingdong SONG, Guoqiang YU, Sheng ZHANG, Xiaoting SHI, Zheng NI
  • Patent number: 8920541
    Abstract: A method is provided for replacing at least a portion of the organic linker content of a zeolitic imidazolate framework composition. The method comprises exchanging the organic linker with another organic linker. Also provided is a new material, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Zheng Ni, Mobae Afeworki, Simon Christopher Weston, John Zengel, David Lawrence Stern
  • Patent number: 8907102
    Abstract: A method is provided for forming a zeolitic imidazolate framework composition using at least one reactant that is relatively insoluble in the reaction medium. Also provided herein is a material made according to the method, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 9, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Simon Christopher Weston, Mobae Afeworki, Zheng Ni, John Zengel, David Lawrence Stern
  • Patent number: 8636969
    Abstract: A method is provided for forming a zeolitic imidazolate framework composition using at least one reactant that is relatively insoluble in the reaction medium. Also provided herein is a material made according to the method, designated either as EMM-19 or as EMM-19*, and a method of using same to adsorb and/or separate gases, such as carbon dioxide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Simon Christopher Weston, Mobae Afeworki, Zheng Ni, John Zengel, David Lawrence Stern
  • Publication number: 20130259792
    Abstract: A method is provided for forming a zeolitic imidazolate framework composition using at least one reactant that is relatively insoluble in the reaction medium. Also provided herein is a material made according to the method, designated either as EMM-19 or as EMM-19*, and a method of using same to adsorb and/or separate gases, such as carbon dioxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: ExxonMobil Research & Engineering Company
    Inventors: Simon Christopher Weston, Mobae Afeworki, Zheng Ni, John Zengel, David Lawrence Stern
  • Publication number: 20130259783
    Abstract: A method is provided for replacing at least a portion of the organic linker content of a zeolitic imidazolate framework composition. The method comprises exchanging the organic linker with another organic linker. Also provided is a new material, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Zheng Ni, Mobae Afeworki, Simon Christopher Weston, John Zengel, David Lawrence Stern
  • Patent number: 8269029
    Abstract: Microwave assisted synthesis may be used to produce water-repellent metallic organic frameworks (MOFs) molecules. The water-repellent MOFs contain non-polar functional groups, such as a trifluoromethoxy group, which has a strong water repellent effect. The water-repellent MOF, when exposed to water vapor for one week does not result in a significant X-ray power pattern change. The water-repellent MOFs may be suitable as an adsorbent in many industrial applications, such as gas chromatography.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: September 18, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Richard I Masel, Zheng Ni, Qingmei Chen
  • Patent number: 8192709
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 5, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8142746
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from methane (“CH4”) in streams containing both carbon dioxide and methane utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from natural gas streams preferably for sequestration of at least a portion of the carbon dioxide present in the natural gas.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8142745
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from nitrogen (“N2”) in streams containing both carbon dioxide and nitrogen utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from combustion gas (e.g., flue gas) streams preferably for sequestration of at least a portion of the carbon dioxide produced in combustion processes.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 27, 2012
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8123834
    Abstract: Novel metal organic framework (MOF) molecules and methods of synthesizing them are described. MOFs are organometallic crystalline structures that have high sorption capacity due to high surface area, tailorable selectivity, an inert nature, and thermal stability at high temperatures. MOFs may be used as sorbents in preconcentrators for analytical devices to provide orders of magnitude of improved sensitivity in analyte detection. MOFs are also useful as sorbents in new compact and portable micropreconcentrator designs such as a modified purge and trap system and a multi-valve microelectromechanical system (MEMS) to achieve high gain in analyte detection. Further, MOFs may be used as coatings for novel microstructure arrays in micropreconcentrators where the microstructures are designed to increase the surface area to volume ratio inside the micropreconcentrator while minimizing the pressure drop across the micropreconcentrator.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: February 28, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Richard I. Masel, Zheng Ni, Mark A. Shannon
  • Patent number: 8114195
    Abstract: A porous crystalline material has a tetrahedral framework comprising a general structure, M1-IM-M2, wherein M1 comprises a metal having a first valency, wherein M2 comprises a metal having a second valency different from said first valency, and wherein IM is imidazolate or a substituted imidazolate linking moiety.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: February 14, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Zheng Ni, John Zengel, David L. Stern
  • Patent number: 8071063
    Abstract: The present invention relates to the selective separation of hydrogen (“H2”) hydrocarbons in streams containing both hydrogen and hydrocarbons (e.g. methane, ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in either a pressure swing adsorption process, a temperature swing adsorption process, or a membrane separations process to separate hydrogen from hydrocarbons present in hydrogen production streams or petrochemical/petroleum refining product streams and intermediate streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 6, 2011
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20110249954
    Abstract: Presentations during an online conference are captured for subsequent playback. An instance of a presentation viewer is deployed to capture the presentation. Annotations and timing data are captured separately. The presentation with the annotations is recorded through a video encoding codec in a desired format, while timing and similar data is stored as metadata. Multiple presentations may be recorded separately to conserve resources. The recordation and the metadata can be subsequently played back to a requesting user.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: Microsoft Corporation
    Inventors: Brian Meek, Felix W. Wong, Jayendran Srinivasan, Shi Lu, Mukul Gupta, Zheng Ni
  • Patent number: 7880026
    Abstract: A rapid, simple and versatile metal organic framework molecule (MOF) synthesis method particularly adapted to make non-linear MOFs includes heating MOF precursors, such as a metal or metal oxide and an organic ligand, in a microwave oven for a period sufficient to achieve crystallization. Microwave-assisted MOF synthesis yields high quality MOF crystals in a reaction time ranging from about 5 seconds to about 2.5 minutes, compared to hours and days required in conventional solvothermal and hydrothermal methods. In addition, microwave assisted methods provide MOF materials with uniform crystal size and well-defined shape. Further, microwave synthesis of MOFs allows the size and shape of MOF crystals to be tailored for use in a wide range applications by manipulating reaction conditions. Secondary growth processes may also be employed to grow larger crystals using seeds obtained from microwave-assisted synthesis methods.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: February 1, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Zheng Ni, Richard I. Masel
  • Publication number: 20100307336
    Abstract: A porous crystalline material has a tetrahedral framework comprising a general structure, M1-IM-M2, wherein M1 comprises a metal having a first valency, wherein M2 comprises a metal having a second valency different from said first valency, and wherein IM is imidazolate or a substituted imidazolate linking moiety.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Inventors: Zheng Ni, John Zengel, David L. Stern
  • Publication number: 20100132547
    Abstract: Novel metal organic framework (MOF) molecules and methods of synthesizing them are described. MOFs are organometallic crystalline structures that have high sorption capacity due to high surface area, tailorable selectivity, an inert nature, and thermal stability at high temperatures. MOFs may be used as sorbents in preconcentrators for analytical devices to provide orders of magnitude of improved sensitivity in analyte detection. MOFs are also useful as sorbents in new compact and portable micropreconcentrator designs such as a modified purge and trap system and a multi-valve microelectromechanical system (MEMS) to achieve high gain in analyte detection. Further, MOFs may be used as coatings for novel microstructure arrays in micropreconcentrators where the microstructures are designed to increase the surface area to volume ratio inside the micropreconcentrator while minimizing the pressure drop across the micropreconcentrator.
    Type: Application
    Filed: October 6, 2006
    Publication date: June 3, 2010
    Inventors: Richard I. Masel, Zheng Ni, Mark A. Shannon
  • Publication number: 20100075123
    Abstract: Microwave assisted synthesis may be used to produce water-repellent metallic organic frameworks (MOFs) molecules. The water-repellent MOFs contain non-polar functional groups, such as a trifluoromethoxy group, which has a strong water repellent effect. The water-repellent MOF, when exposed to water vapor for one week does not result in a significant X-ray power pattern change. The water-repellent MOFs may be suitable as an adsorbent in many industrial applications, such as gas chromatography.
    Type: Application
    Filed: April 8, 2009
    Publication date: March 25, 2010
    Applicant: University of Illinois - Office of Technology Management
    Inventors: Richard I. MASEL, Zheng NI, Qingmei CHEN
  • Patent number: 7668382
    Abstract: Systems and methods for block-based fast image compression are described. In one aspect, a digital image is segmented into multiple blocks. A respective set of statistical characteristics is identified for each of the segmented blocks. Each of the blocks is encoded with a particular encoding algorithm of multiple encoding algorithms. The particular encoding algorithm that is used to encode a particular block segmented from the digital image is selected to efficiently encode the block in view of statistical characteristics associated with the block. Thus, blocks of different block types may be encoded with different encoding algorithms.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: February 23, 2010
    Assignee: Microsoft Corporation
    Inventors: Feng Wu, Bo Qin, Wenpeng Ding, Dong Liu, Jian Wang, Yuwen He, Zheng Ni
  • Patent number: 7653705
    Abstract: The present interactive recording and playback technique provides the ability to archive the content, the discussions and the metadata of a meeting or similar event; then aggregate, search and annotate across this data; and finally edit, combine, or split various recordings to create new presentations. This interactive recording and playback technique provides rich productivity and innovation that is unavailable today.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: January 26, 2010
    Assignee: Microsoft Corp.
    Inventors: Ananta Gudipaty, Avronil Bhattacharjee, Zheng Ni, Bo Qin, Jeremy Smith, Zhi-Wei Lin, Mingju Zhang, Sumeet Bawa, Aliasgar Haveliwala