Patents by Inventor Zhengbiao Ouyang

Zhengbiao Ouyang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10095082
    Abstract: The present invention discloses a TEOS with a high extinction ratio based on slab PhCs which comprises an upper slab PhC and a lower slab PhC connected as a whole; the upper slab PhC is a first square-lattice slab PhC, the unit cell of the first square-lattice slab PhC includes a high-refractive-index rotating-square pillar, three first flat dielectric pillars and a background dielectric, the first flat dielectric pillars include a high-refractive-index dielectric pipe and a low-refractive-index dielectric, or 1 to 3 high-refractive-index flat films, or a low-refractive-index dielectric; the lower slab PhC is a second square-lattice slab PhC with a complete bandgap, the unit cell of the second square-lattice slab PhC includes a high-refractive-index rotating-square pillar, three second flat dielectric pillars and a background dielectric is a low-refractive-index dielectric; and an normalized operating frequency of the TEOS is 0.4057 to 0.406.
    Type: Grant
    Filed: June 18, 2017
    Date of Patent: October 9, 2018
    Inventor: Zhengbiao Ouyang
  • Patent number: 10094979
    Abstract: The present invention discloses a 2D square-lattice PhC with rotated hollow square rods and rotated triangle rods comprising a high-refractive-index dielectric rod and a low-refractive-index background dielectric rod, and providing a 2D square-lattice PhC structure having a large absolute PBG relative value. The unit cell of the square-lattice PhC includes a high-refractive-index rotated hollow square rod, a high-refractive-index triangle rod and a low-refractive-index background dielectric, the hollow square rod has an outer contour being the first rotated square rod and a hollow part with a cross section being the second rotated square rod; the cross section of a high-refractive-index triangular rod is a right-angle triangle located at the hollow part of the square rod, the triangular rods are four right-angled triangular rods, the vertex connecting lines of four triangular rods form a third rotated square rod; the hypotenuse connecting lines of four triangular rods form a fourth rotated square rod.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: October 9, 2018
    Inventor: Zhengbiao Ouyang
  • Patent number: 10042117
    Abstract: The present invention discloses a photonic crystal (PhC) all-optical AND-transformation logic gate, which comprises a PhC-structure unit, an optical-switch unit, a wave-absorbing load, a NOT-logic gate and a D-type flip-flop; two intermediate-signal output ports of the optical-switch unit are respectively connected with the intermediate-signal input port and the wave-absorbing load of the PhC-structure unit; a clock-signal CP input port is connected with three-branch waveguide, and three output ports are respectively connected with first clock-signal CP input port of the optical-switch unit, second clock-signal CP input port of the PhC-structure unit and the NOT-logic-gate input port; the NOT-logic-gate output port is connected with third clock-signal CP input port of the D-type flip-flop; the signal-output port of the PhC-structure unit is connected with the D-signal input port of the D-type flip-flop.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: August 7, 2018
    Inventor: Zhengbiao Ouyang
  • Patent number: 10036905
    Abstract: A compact six-port Photonic Crystal (PhC) circulator includes a hexagonal PhC branch waveguide and six waveguide ports, wherein six PhC branch waveguides respectively correspond to the six waveguide ports, and the six waveguide ports respectively are symmetrically distributed at the periphery of PhCs. One second dielectric material column is arranged at the center of the hexagonal PhC waveguide. Six identical magneto-optical material columns respectively are arranged at first adjacent positions of the second dielectric material column. Six identical third dielectric material columns respectively are arranged at second adjacent positions of the second dielectric material column. An electromagnetic signal is inputted from any one of the waveguide ports and is outputted from the next waveguide port adjacent thereto, while the remaining waveguide ports are in a signal isolated state, thus forming unidirectional circular transmission.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: July 31, 2018
    Assignee: Shenzhen University
    Inventors: Zhengbiao Ouyang, Qiong Wang
  • Patent number: 9971227
    Abstract: The present invention discloses a TMOS based on slab PhCs with a high DOP and a large EXR, which comprises an upper slab PhC and a lower slab PhC; the upper slab PhC is called as a first square-lattice slab PhC with a TE bandgap, the unit cell of the first square-lattice slab PhC includes a high-refractive-index rotating-square pillar, a single first flat dielectric pillar and a background dielectric, the first flat dielectric pillar includes a high-refractive-index dielectric pipe and a low-refractive-index dielectric, or a high-refractive-index flat film, or a low-refractive-index dielectric; the lower slab PhC is a second square-lattice slab PhC with a complete bandgap, wherein the unit cell of the second square-lattice slab PhC includes a high-refractive-index rotating-square pillar, a single second flat dielectric pillar and a background dielectric, and a normalized operating frequency of the TMOS with high DOP and large extinction ratio is 0.252 to 0.267.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: May 15, 2018
    Assignee: ZHENGBIAO OUYANG
    Inventor: Zhengbiao Ouyang
  • Publication number: 20180128953
    Abstract: The present invention discloses a right-handed circular-polarization conversion metamaterial film, and is of an optical frequency band metamaterial structure, comprising a first metal microstructure layer, a dielectric substrate layer and a second metal microstructure layer, wherein the first and the second metal microstructure layers are located on two sides of the dielectric substrate layer; an upper surface of the first metal microstructure layer is an incident surface, the lower surface of the second metal microstructure layer is an exit surface; the first and the second metal microstructure layers are of chirally-symmetric left-handed windmill structures or spiral chirally-symmetric left-handed artificial structures, a right-hand-rotated angle using the structure center as a rotation center is formed between the first and the second metal microstructure layers, the amplitudes of two orthogonal components of output light waves are equal, and a phase difference of the two orthogonal components is odd times
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventor: Zhengbiao Ouyang
  • Publication number: 20180131100
    Abstract: The present invention discloses a left-handed circular-polarization conversion metamaterial film, and is of an optical frequency band metamaterial structure, comprising a first metal microstructure layer, a dielectric substrate layer and a second metal microstructure layer, wherein the first and the second metal microstructure layers are attached to the two sides of the dielectric substrate layer; an upper surface of the first metal microstructure layer is an incident surface; the lower surface of the second metal microstructure layer is an exit surface; the first and the second metal microstructure layers are of chirally-symmetric right-handed windmill structures or spiral chirally-symmetric right-handed artificial structures, left-hand-rotated angle using the structure center as a rotation center is formed between the first and the second metal microstructure layers, the amplitudes of two orthogonal components of output light waves are equal, and a phase difference of the two orthogonal components is odd ti
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventor: Zhengbiao Ouyang
  • Publication number: 20180088276
    Abstract: The present invention discloses a 2D square-lattice PhC based on rotated hollow square rods, comprising a high-refractive-index dielectric rod and a low-refractive-index background dielectric rod; the PhC is formed by unit cells arranged according to square-lattices; the lattice constant of the square-lattice PhC is a; the unit cell of the square-lattice PhC includes a high-refractive-index rotated hollow square rod and a background dielectric; the outer contour of the hollow square rod is the first high-refractive-index rotated hollow square rod with the rotated angle ? of 45° to 65° and the side length b of 0.6a to 0.75a, and a is the lattice constant of the square-lattice PhC; the cross section of the hollow part of the hollow square rod is a second high-refractive-index rotated hollow square rod with the rotated angle ? of 25° to 50° and the side length c of 0.33a to 0.50a.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 29, 2018
    Inventor: Zhengbiao Ouyang
  • Publication number: 20180074228
    Abstract: The present invention discloses a 2D square-lattice PhC based on cross rods and rotated hollow square rods, comprising a high-refractive-index dielectric rod, a cross plate dielectric rod and a low-refractive-index background dielectric rod; the unit cell of the square-lattice PhC includes a high-refractive-index rotated hollow square rod, a cross plate dielectric rod and a background dielectric; the hollow square rod has an outer contour which is a first rotated square rod with the rotated angle ? of 45° to 65° and the side length b of 0.6 a to 0.75 a, and a hollow part with a cross section being a second rotated square rod with the rotated angle ? of 25° to 50° and the side length c of 0.33 a to 0.5 a; the first rotated square rod is connected with the cross plate dielectric rod, plate dielectric rods of which in the horizontal and vertical directions have different widths.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 15, 2018
    Inventor: Zhengbiao Ouyang
  • Publication number: 20180074260
    Abstract: The present invention discloses a 2D square-lattice PhC with rotated hollow square rods and rotated triangle rods comprising a high-refractive-index dielectric rod and a low-refractive-index background dielectric rod, and providing a 2D square-lattice PhC structure having a large absolute PBG relative value. The unit cell of the square-lattice PhC includes a high-refractive-index rotated hollow square rod, a high-refractive-index triangle rod and a low-refractive-index background dielectric, the hollow square rod has an outer contour being the first rotated square rod and a hollow part with a cross section being the second rotated square rod; the cross section of a high-refractive-index triangular rod is a right-angle triangle located at the hollow part of the square rod, the triangular rods are four right-angled triangular rods, the vertex connecting lines of four triangular rods form a third rotated square rod; the hypotenuse connecting lines of four triangular rods form a fourth rotated square rod.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 15, 2018
    Inventor: Zhengbiao Ouyang
  • Patent number: 9904010
    Abstract: The present invention discloses a PIOS with a high extinction ratio based on slab PhCs which comprises an upper slab PhC and a lower slab PhC connected as a whole; the upper slab PhC is a first square-lattice slab PhC, the unit cell of the first square-lattice slab PhC includes a high-refractive-index rotating square pillar, a single first flat dielectric pillar and a background dielectric; the first flat dielectric pillar includes a high-refractive-index dielectric pipe and a low-refractive-index dielectric, or a high-refractive-index flat films, or a low-refractive-index dielectric; the lower slab PhC is a second square-lattice slab PhC with a complete bandgap, the unit cell of said second square-lattice slab PhC includes a high-refractive-index rotating square pillar, a single second flat dielectric pillar and a background dielectric is a low-refractive-index dielectric; and an normalized frequency of the optical switch is 0.41 to 0.4167.
    Type: Grant
    Filed: June 18, 2017
    Date of Patent: February 27, 2018
    Assignee: ZHENGBIAO OUYANG
    Inventor: Zhengbiao Ouyang
  • Patent number: 9885939
    Abstract: The present invention discloses a TEOS based on slab PhCs with a high DOP and large EXR, which comprises an upper slab PhC and a lower slab PhC; the upper slab PhC is a first square-lattice slab PhC with a TM bandgap and a complete bandgap, wherein the unit cell of the first square-lattice slab PhC includes a high-refractive-index rotating-square pillar, a single first flat dielectric pillar and a background dielectric, the first flat dielectric pillar includes a high-refractive-index dielectric pipe and a low-refractive-index dielectric, or a high-refractive-index flat film, or a low-refractive-index dielectric; the lower slab PhC is a second square lattice slab PhC with a TM bandgap and complete bandgap, wherein the unit cell of the second square-lattice slab PhC includes a high-refractive-index rotating-square pillar, a single second flat dielectric pillar and a background dielectric, and an normalized operating frequency of the TEOS is 0.453 to 0.458.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: February 6, 2018
    Inventor: Zhengbiao Ouyang
  • Patent number: 9880444
    Abstract: The present invention discloses a TMOS with a high extinction ratio based on slab PhCs which comprises an upper slab PhC and a lower slab PhC connected as a whole; the upper slab PhC is called as a first square-lattice slab PhC, wherein the unit cell of the first square-lattice slab PhC includes a high-refractive-index rotating-square pillar, three first flat dielectric pillars and a background dielectric, and the first flat dielectric pillars includes a high-refractive-index dielectric pipe and a low-refractive-index dielectric, or of 1 to 3 high-refractive-index flat films, or of a low-refractive-index dielectric; the lower slab PhC is a second square-lattice slab PhC with a complete bandgap, the unit cell of the second square-lattice slab PhC includes a high-refractive-index rotating-square pillar, three second flat dielectric pillars and a background dielectric is a low-refractive-index dielectric and an normalized operating frequency of the TMOS is 0.4057 to 0.406.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: January 30, 2018
    Inventor: Zhengbiao Ouyang
  • Publication number: 20170351157
    Abstract: The present invention discloses an high-contrast photonic crystal “OR”, “NOT” and “XOR” logic gate, comprising a six-port two-dimensional photonic crystal, a nonlinear cavity unit and a cross-waveguide logic gate unit; the high-contrast photonic crystal “OR” logic gate includes a first reference-light input port, two first idle ports, two first signal-input ports and a first signal-output port; the high-contrast photonic crystal “NOT” logic gate includes two second reference-light input ports, two second idle ports, a second signal-input port and a second signal-output port; and the high-contrast photonic crystal “XOR” logic gate includes a three reference-light input port, two three-idle ports, two three-signal input ports and a three-signal output port; the cross-waveguide logic gate unit is arranged with different input or output ports; and the nonlinear cavity unit is coupled with the cross-waveguide logic gate unit.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 7, 2017
    Inventor: Zhengbiao Ouyang
  • Publication number: 20170322375
    Abstract: A photonic crystal (PhC) all-optical self-OR-transformation logic gate, which comprises an optical-switch unit (OSU), a PhC structure unit, a reference-light source, a memory or delayer and a D-type flip-flop (DFF); an input port of a delayer is connected with a logic-signal X, and an output port of said delayer is connected with the logic-signal-input port of said OSU; a reference light is connected to the reference-light-input port of said OSU; two intermediate-signal-output ports of said OSU are respectively connected with the two intermediate-signal-input port of said PhC-structure unit; a clock-signal CP is connected to the clock-signal-CP-input port of said OSU and the second clock-signal-input port of said DFF; the signal-output port of said PhC-structure unit is connected with the D-signal input port of said DFF. The structure of the present invention is compact in structure, strong in anti-interference capability and ease in integration with other optical-logic elements.
    Type: Application
    Filed: June 19, 2017
    Publication date: November 9, 2017
    Inventor: Zhengbiao Ouyang
  • Publication number: 20170322433
    Abstract: A compact six-port Photonic Crystal (PhC) circulator includes a hexagonal PhC branch waveguide and six waveguide ports, wherein six PhC branch waveguides respectively correspond to the six waveguide ports, and the six waveguide ports respectively are symmetrically distributed at the periphery of PhCs. One second dielectric material column is arranged at the center of the hexagonal PhC waveguide. Six identical magneto-optical material columns respectively are arranged at first adjacent positions of the second dielectric material column. Six identical third dielectric material columns respectively are arranged at second adjacent positions of the second dielectric material column. An electromagnetic signal is inputted from any one of the waveguide ports and is outputted from the next waveguide port adjacent thereto, while the remaining waveguide ports are in a signal isolated state, thus forming unidirectional circular transmission.
    Type: Application
    Filed: September 28, 2015
    Publication date: November 9, 2017
    Inventors: Zhengbiao OUYANG, Qiong WANG
  • Publication number: 20170307821
    Abstract: A PhC all-optical multistep-delay self-OR-transformation logic gate including an optical switch unit, a PhC structure unit, a reference-light, a memory or delayer, a D-type flip-flop unit and a wave absorbing load; a logic signal X is connected to the input port of a two-branch waveguide whose two output ports are respectively connected with the input port of the memory and the logic-signal input port of the optical switch unit; the output port of the memory is connected with the delay-signal input port of the optical switch unit; the reference-light source is connected with the reference-light input port of the optical switch unit whose three intermediate-signal output ports are respectively connected with the first and second intermediate-signal input ports of the PhC structure unit and the wave absorbing load; and the output port of the PhC structure unit is connected with the D-signal input port of the D-type flip-flop unit.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 26, 2017
    Inventor: Zhengbiao Ouyang
  • Publication number: 20170307822
    Abstract: A photonic crystal (PhC) all-optical OR-transformation logic gate, which comprises an optical-switch unit (OSU), a PhC-structure unit, a reference light, a wave-absorbing load (WAL) and a D-type flip-flop (DFF) unit; two system-signal-input ports are respectively connected with a first logic-signal X1 and a second logic-signal X2; the reference light is connected with the reference-light-input port of the OSU; three intermediate-signal-output ports are respectively connected with two intermediate-signal-input ports of the PhC-structure unit and the WAL; a clock-signal CP through the input port of a two-branch waveguide are respectively connected with a first clock-signal CP input port of the OSU and a second clock-signal-CP-input port of the DFF unit; the signal-output port of the PhC-structure unit is connected with the D-signal-input port of the DFF unit.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 26, 2017
    Inventor: Zhengbiao Ouyang
  • Publication number: 20170307823
    Abstract: The present invention discloses a photonic crystal (PhC) all-optical multistep-delay AND-transformation logic gate, which comprises a PhC-structure unit, an optical-switch unit (OSU), a wave-absorbing load, a NOT-logic gate, a D-type flip-flop (DFF) and a memory or delayer; an input port of a memory is connected with a first logic-signal X1, and an output port of the memory is connected with the delay-signal-input port of the OSU; a second logic-signal X2 is connected with the logic-signal-input port of the OSU; two intermediate-signal-output ports of the OSU are respectively the intermediate-signal-input port of the PhC-structure unit and the wave-absorbing load; a clock-signal CP is connected with the input port of a three-branch waveguide; the signal-output port of the PhC-structure unit is connected with the D-signal-input port of the DFF unit. The structure of the present invention is compact in structure and ease of integration with other optical-logic elements.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 26, 2017
    Inventor: Zhengbiao Ouyang
  • Publication number: 20170307820
    Abstract: The present invention discloses a high-contrast photonic crystal AND logic gate, comprising a five-port two-dimensional photonic crystal, a nonlinear cavity unit and a Y-shape AND logic gate unit; and it includes a reference-light input port, two signal-input ports, a system signal-output port and an idle port; the nonlinear cavity unit is coupled with the Y-shape AND logic gate unit. The structure of the present invention, which is compact in structure and ease of integration with other optical logic elements, not only can realize the functions of the high-contrast photonic and logic gate, but also has high contrast of high and low logic output; and is widely applicable to optical communication bands.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 26, 2017
    Inventor: Zhengbiao Ouyang