Patents by Inventor Zhengfang Ge

Zhengfang Ge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7842491
    Abstract: The invention relates to compositions and kits for homogeneous fluorescence polarization (anisotropy) assays for detecting and quantifying metal ions in solution. Metal-dependent binding of a fluorescent ligand to an unlabeled macromolecule effects a measurable change in anisotropy as will the binding of metal ions to a fluorescent labeled macromolecule. Binding of the fluorescent ligand to the unlabeled macromolecule is metal dependent with the change in anisotropy being proportional to the concentration of bound metal ions. Conversely, if the fluorescent label is first conjugated to a macromolecule and the macromolecule is subsequently stripped of metal ion, it may then be used to signal binding of metal ions. The covalently bound fluorescent label exhibits changes in anisotropy proportional to the concentration of bound metal ions. Kits comprise a fluorescent molecule and a macromolecule.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: November 30, 2010
    Inventors: Richard B. Thompson, Daniel Elbaum, Vincent L. Feliccia, David Christianson, Marcia W. Patchan, Zhengfang Ge, Badri P. Maliwal
  • Publication number: 20050250170
    Abstract: The invention relates to compositions and kits for homogeneous fluorescence polarization (anisotropy) assays for detecting and quantifying metal ions in solution. Metal-dependent binding of a fluorescent ligand to an unlabeled macromolecule effects a measurable change in anisotropy as will the binding of metal ions to a fluorescent labeled macromolecule. Binding of the fluorescent ligand to the unlabeled macromolecule is metal dependent with the change in anisotropy being proportional to the concentration of bound metal ions. Conversely, if the fluorescent label is first conjugated to a macromolecule and the macromolecule is subsequently stripped of metal ion, it may then be used to signal binding of metal ions. The covalently bound fluorescent label exhibits changes in anisotropy proportional to the concentration of bound metal ions. Kits comprise a fluorescent molecule and a macromolecule.
    Type: Application
    Filed: November 8, 2004
    Publication date: November 10, 2005
    Inventors: Richard Thompson, Daniel Elbaum, Vincent Feliccia, David Christianson, Marcia Patchan, Zhengfang Ge, Badri Maliwal
  • Publication number: 20020055091
    Abstract: Homogeneous fluorescence polarization (anisotropy) assays for detecting and quantifying metal ions in solution, based the metal-dependent binding of a fluorescent ligand to an unlabeled macromolecule, or the binding of a metal ion to a fluorescent labeled macromolecule. The metal-dependent binding of a fluorescent ligand to an unlabeled macromolecule (metallo-macromolecule) effects a measurable change in anisotropy as will the binding of metal ions to a fluorescent labeled macromolecule. Binding of the fluorescent ligand to the unlabeled macromolecule is metal dependent with the change in anisotropy being proportional to the concentration of bound metal ions. No binding of the fluorescent ligand to the macromolecule occurs in the absence of metal ions. Conversely, if the fluorescent label is first conjugated to a metallo-macromolecule and the metallo-macromolecule is subsequently stripped of its metal ion, it may then be used to transduce the binding of metal ions.
    Type: Application
    Filed: August 31, 2001
    Publication date: May 9, 2002
    Applicant: University of Pennsylvania
    Inventors: Richard B. Thompson, Daniel Elbaum, Vincent L. Feliccia, David Christianson, Marcia W. Patchan, Zhengfang Ge, Badri P. Maliwal
  • Patent number: 6284544
    Abstract: Homogeneous fluorescence polarization (anisotropy) assays for detecting and quantifying metal ions in solution, based the metal-dependent binding of a fluorescent ligand to an unlabeled macromolecule, or the binding of a metal ion to a fluorescent labeled macromolecule. The metal-dependent binding of a fluorescent ligand to an unlabeled macromolecule (metallo-macromolecule) effects a measurable change in anisotropy as will the binding of metal ions to a fluorescent labeled macromolecule. Binding of the fluorescent ligand to the unlabeled macromolecule is metal dependent with the change in anisotropy being proportional to the concentration of bound metal ions. No binding of the fluorescent ligand to the macromolecule occurs in the absence of metal ions. Conversely, if the fluorescent label is first conjugated to a metallo-macromolecule and the metallo-macromolecule is subsequently stripped of its metal ion, it may then be used to transduce the binding of metal ions.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: September 4, 2001
    Assignees: University of Pennsylvania, University of Maryland
    Inventors: Richard B. Thompson, Daniel Elbaum, Vincent L. Feliccia, David Christianson, Marcia W. Patchan, Zhengfang Ge, Badri P. Maliwal
  • Patent number: 5952236
    Abstract: This invention generally relates to the detection, determination, and quantitation of certain ions and small molecules involving the quenching of a fluorescent label attached to a macromolecule, often due to fluorescence energy transfer to a colored inhibitor or certain metal ions bound to the macromolecule.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: September 14, 1999
    Inventors: Richard B. Thompson, Marcia W. Patchan, Zhengfang Ge