Patents by Inventor Zhengping Yao
Zhengping Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12208637Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing a patterned optical device film on an optical device substrate. According to certain embodiments, an inkjet deposition process is used to deposit a patterned inkjet coating layer on the optical device substrate. A deposition process may then be used to deposit an optical device material on the patterned inkjet coating and the optical device substrate. The patterned inkjet coating on the optical device substrate may then be washed with an appropriate detergent to lift-off the patterned inkjet coating layer from the optical device substrate to form the patterned optical device film.Type: GrantFiled: February 10, 2023Date of Patent: January 28, 2025Assignee: Applied Materials, Inc.Inventors: Yingdong Luo, Jinyu Lu, Takashi Kuratomi, Alexia Adilene Portillo Rivera, Xiaopei Deng, Zhengping Yao, Daihua Zhang, Rami Hourani, Ludovic Godet
-
Publication number: 20240295693Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.Type: ApplicationFiled: April 8, 2024Publication date: September 5, 2024Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
-
Publication number: 20240270007Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing a patterned optical device film on an optical device substrate. According to certain embodiments, an inkjet deposition process is used to deposit a patterned inkjet coating layer on the optical device substrate. A deposition process may then be used to deposit an optical device material on the patterned inkjet coating and the optical device substrate. The patterned inkjet coating on the optical device substrate may then be washed with an appropriate detergent to lift-off the patterned inkjet coating layer from the optical device substrate to form the patterned optical device film.Type: ApplicationFiled: February 10, 2023Publication date: August 15, 2024Inventors: Yingdong LUO, Jinyu LU, Takashi KURATOMI, Alexia Adilene PORTILLO RIVERA, Xiaopei DENG, Zhengping YAO, Daihua ZHANG, Rami HOURANI, Ludovic GODET
-
Publication number: 20240142690Abstract: An apparatus for waveguides and a method of fabricating a waveguide combiner having at least one grating with trenches gap-filled with variable refractive index materials. At least two trenches of at least one grating includes a first gap-fill material having a first volume and a first refractive index, and a second gap-fill material having a second volume and a second refractive index different than the first refractive index. Control of the deposition of first volume and the deposition of second volume in an inkjet deposition process provide for the formation of the grating with two trenches that have different refractive indices and different gap-fill depths. The first gap-fill material and the second gap-fill material merge to form the gap-filler. Therefore, by controlling the varied refractive indices and different gap-fill depths the waveguide combiner is optimized by efficiency or a color uniformity.Type: ApplicationFiled: September 22, 2023Publication date: May 2, 2024Inventors: Yingdong LUO, Jinxin FU, Zhengping YAO, Daihua ZHANG, Ludovic GODET
-
Publication number: 20240126012Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.Type: ApplicationFiled: October 18, 2023Publication date: April 18, 2024Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
-
Patent number: 11901203Abstract: Methods and systems for detection of an endpoint of a substrate process are provided. A set of machine learning models are trained to provide a metrology measurement value associated with a particular type of metrology measurement for a substrate based on spectral data collected for the substrate. A respective machine learning model is selected to be applied to future spectral data collected during a future substrate process for a future substrate in view of a performance rating associated with the particular type of metrology measurement. Current spectral data is collected during a current process for a current substrate and provided as input to the respective machine learning model. An indication of a respective metrology measurement value corresponding to the current substrate is extracted from one or more outputs of the trained machine learning model.Type: GrantFiled: June 10, 2021Date of Patent: February 13, 2024Assignee: Applied Materials, Inc.Inventors: Pengyu Han, Lei Lian, Shu Yu Chen, Todd Egan, Wan Hsueh Lai, Chao-Hsien Lee, Pin Ham Lu, Zhengping Yao, Barry Craver
-
Publication number: 20240001398Abstract: A method of forming a substrate carrier is provided. The method includes forming a first electrode over a first surface of a substrate, the first electrode arranged in a first pattern including a plurality of segments, wherein portions of the plurality of segments are spaced apart from each other by a plurality of gaps; and dispensing a plurality of droplets of a dielectric material over the substrate and into the plurality of gaps. The plurality of droplets includes a first droplet and a second droplet, the first droplet is dispensed onto a first location over the substrate, the second droplet is dispensed onto a second location over the substrate, a size of the first droplet is at least 10% larger than a size of the second droplet.Type: ApplicationFiled: June 19, 2023Publication date: January 4, 2024Inventors: Russell Chin Yee TEO, Yingdong LUO, Ludovic GODET, Daihua ZHANG, Zhengping YAO, James D. STRASSNER
-
Publication number: 20230306281Abstract: A method includes determining that conditions of a processing chamber have changed since a trained machine learning model associated with the processing chamber was trained. The method further includes determining whether a change in the conditions of the processing chamber is a gradual change or a sudden change. Responsive to determining that the change in the conditions of the processing chamber is a gradual change, the method further includes performing a first training process to generate a new machine learning model. Responsive to determining that the change in the conditions of the processing chamber is a sudden change, the method further includes performing a second training process to generate the new machine learning model. The first training process is different from the second training process.Type: ApplicationFiled: February 9, 2022Publication date: September 28, 2023Inventors: Pengyu Han, Hong-Rui Chen, Shu-Yu Chen, Wan-Hsueh Lai, Pin Ham Lu, Zhengping Yao
-
Publication number: 20230123795Abstract: A method and apparatus for dicing optical devices from a substrate are described herein. The method includes the formation of a plurality of trenches using radiation pulses delivered to the substrate. The radiation pulses are delivered in a pattern to form trenches with varying depth as the trenches extend outward from a top surface of the optical device. The varying depth of the trenches provides edges of each of the optical devices which are slanted. The radiation pulses are UV radiation pulses and are delivered in bursts around the silhouette of the optical devices.Type: ApplicationFiled: September 15, 2022Publication date: April 20, 2023Inventors: Wei-Sheng LEI, Zhengping YAO, Mahendran CHIDAMBARAM, Kangkang WANG, Zhihong John LIN, Ludovic GODET, Visweswaren SIVARAMAKRISHNAN
-
Publication number: 20220399215Abstract: Methods and systems for detection of an endpoint of a substrate process are provided. A set of machine learning models are trained to provide a metrology measurement value associated with a particular type of metrology measurement for a substrate based on spectral data collected for the substrate. A respective machine learning model is selected to be applied to future spectral data collected during a future substrate process for a future substrate in view of a performance rating associated with the particular type of metrology measurement. Current spectral data is collected during a current process for a current substrate and provided as input to the respective machine learning model. An indication of a respective metrology measurement value corresponding to the current substrate is extracted from one or more outputs of the trained machine learning model.Type: ApplicationFiled: June 10, 2021Publication date: December 15, 2022Inventors: Pengyu Han, Lei Lian, Shu Yu Chen, Todd Egan, Wan Hsueh Lai, Chao-Hsien Lee, Pin Ham Lu, Zhengping Yao, Barry Craver
-
Publication number: 20220397515Abstract: A machine learning model trained to provide metrology measurements for a substrate is provided. Training data generated for a prior substrate processed according to a prior process is provided to train the model. The training data includes a training input including a subset of historical spectral data extracted from a normalized set of historical spectral data collected for the prior substrate during the prior process. The subset of historical spectral data includes an indication of historical spectral features associated with a particular type of metrology measurement. The training data also includes a training output including a historical metrology measurement obtained for the prior substrate, the historical metrology measurement associated with the particular type of metrology measurement. Spectral data is collected for a current substrate processed according to a current process.Type: ApplicationFiled: June 10, 2021Publication date: December 15, 2022Inventors: Pengyu Han, Lei Lian, Shu Yu Chen, Todd Egan, Wan Hsueh Lai, Chao-Hsien Lee, Pin Ham Lu, Zhengping Yao, Barry Craver
-
Patent number: 11331855Abstract: An additive manufacturing apparatus includes a platform, a dispenser configured to deliver a plurality of successive layers of feed material on a platform, a light source configured to generate a light beam, an auxiliary polygon mirror scanner configured to receive the light beam from the light source and reflect the light beam, and a primary mirror scanner to receive the light beam reflected by the auxiliary polygon mirror scanner and direct the light beam to impinge on an exposed layer of feed material.Type: GrantFiled: November 13, 2018Date of Patent: May 17, 2022Assignee: Applied Materials, Inc.Inventors: Zhengping Yao, Paul J. Steffas
-
Publication number: 20190143595Abstract: An additive manufacturing apparatus includes a platform, a dispenser configured to deliver a plurality of successive layers of feed material on a platform, a light source configured to generate a light beam, an auxiliary polygon mirror scanner configured to receive the light beam from the light source and reflect the light beam, and a primary mirror scanner to receive the light beam reflected by the auxiliary polygon mirror scanner and direct the light beam to impinge on an exposed layer of feed material.Type: ApplicationFiled: November 13, 2018Publication date: May 16, 2019Inventors: Zhengping Yao, Paul J. Steffas