Patents by Inventor Zhengquan Tan

Zhengquan Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7064077
    Abstract: A method of depositing a high density plasma silicon oxide layer having improved gapfill capabilities. In one embodiment the method includes flowing a process gas consisting of a silicon-containing source, an oxygen-containing source and helium into a substrate processing chamber and forming a plasma from the process gas. The ratio of the flow rate of the helium with respect to the combined flow rate of the silicon source and oxygen source is between 0.5:1 and 3.0:1 inclusive. In one particular embodiment, the process gas consists of monosilane (SiH4), molecular oxygen (O2) and helium.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: June 20, 2006
    Assignee: Applied Materials
    Inventors: Zhong Qiang Hua, Dong Qing Li, Zhengquan Tan, Zhuang Li, Michael Chiu Kwan, Bruno Geoffrion, Padmanabhan Krishnaraj
  • Publication number: 20050254049
    Abstract: A method for measurement of a specimen is provided. The method includes measuring spectroscopic ellipsometric data of the specimen. The method also includes determining a nitrogen concentration of a nitrided oxide gate dielectric formed on the specimen from the spectroscopic ellipsometric data. A computer-implemented method for analysis of a specimen is also provided. This method includes determining a nitrogen concentration of a nitrided oxide gate dielectric formed on the specimen from spectroscopic ellipsometric data generated by measurement of the specimen. In some embodiments, the methods described above may include determining an index of refraction of the nitrided oxide gate dielectric from the spectroscopic ellipsometric data and determining the nitrogen concentration from the index of refraction. In another embodiment, the methods described above may include measuring reflectometric data of the specimen.
    Type: Application
    Filed: May 14, 2004
    Publication date: November 17, 2005
    Inventors: Qiang Zhao, Torsten Kaack, Sungchul Yoo, Zhengquan Tan
  • Publication number: 20050181632
    Abstract: A method for forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The method includes flowing a process gas that includes a silicon-containing source, an oxygen-containing source and a fluorine-containing source into the substrate processing chamber and forming a plasma from said process gas. The substrate is heated to a temperature above 450° C. during deposition of said silicon oxide layer and the deposited layer has a fluorine content of less than 1.0 atomic percent.
    Type: Application
    Filed: March 30, 2005
    Publication date: August 18, 2005
    Applicant: Applied Materials, Inc., A Delaware corporation
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt
  • Patent number: 6929700
    Abstract: A substrate processing apparatus comprising a substrate processing chamber, a gas distribution system operatively coupled to the chamber, a high density plasma power source, a controller operatively coupled to the gas distribution system and the high density plasma power source and a memory coupled to the controller. The memory includes computer instructions embodied in a computer-readable format. The computer instructions comprise (i) instructions that control the gas distribution system to flow a process gas comprising a silane gas, an oxygen-containing source, an inert gas and a hydrogen-containing source that is either molecular hydrogen or a hydride gas that does not include silicon, boron or phosphorus and (ii) instructions that control the high density plasma source to form a plasma having an ion density of at least 1×1011 ions/cm3 from the process gas to deposit the silicon oxide layer over the substrate.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: August 16, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt, Tetsuya Ishikawa
  • Patent number: 6914016
    Abstract: A method for forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The method includes flowing a process gas that includes a silicon-containing source, an oxygen-containing source and a fluorine-containing source into the substrate processing chamber and forming a plasma from said process gas. The substrate is heated to a temperature above 450° C. during deposition of said silicon oxide layer and the deposited layer has a fluorine content of less than 1.0 atomic percent.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: July 5, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt
  • Publication number: 20050079715
    Abstract: A method of depositing a high density plasma silicon oxide layer having improved gapfill capabilities. In one embodiment the method includes flowing a process gas consisting of a silicon-containing source, an oxygen-containing source and helium into a substrate processing chamber and forming a plasma from the process gas. The ratio of the flow rate of the helium with respect to the combined flow rate of the silicon source and oxygen source is between 0.5:1 and 3.0:1 inclusive. In one particular embodiment, the process gas consists of monosilane (SiH4), molecular oxygen (O2) and helium.
    Type: Application
    Filed: October 1, 2004
    Publication date: April 14, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Zhong Hua, Dong Li, Zhengquan Tan, Zhuang Li, Michael Kwan, Bruno Geoffrion, Padmanabhan Krishnaraj
  • Patent number: 6812153
    Abstract: A method of depositing a high density plasma silicon oxide layer having improved gapfill capabilities. In one embodiment the method includes flowing a process gas consisting of a silicon-containing source, an oxygen-containing source and helium into a substrate processing chamber and forming a plasma from the process gas. The ratio of the flow rate of the helium with respect to the combined flow rate of the silicon source and oxygen source is between 0.5:1 and 3.0:1 inclusive. In one particular embodiment, the process gas consists of monosilane (SiH4), molecular oxygen (O2) and helium.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: November 2, 2004
    Assignee: Applied Materials Inc.
    Inventors: Zhong Qiang Hua, Dong Qing Li, Zhengquan Tan, Zhuang Li, Michael Chiu Kwan, Bruno Geoffrion, Padmanabhan Krishnaraj
  • Publication number: 20040152341
    Abstract: A method for forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The method includes flowing a process gas that includes a silicon-containing source, an oxygen-containing source and a fluorine-containing source into the substrate processing chamber and forming a plasma from said process gas. The substrate is heated to a temperature above 450° C. during deposition of said silicon oxide layer and the deposited layer has a fluorine content of less than 1.0 atomic percent.
    Type: Application
    Filed: January 21, 2004
    Publication date: August 5, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing LI, Walter Zygmunt
  • Patent number: 6740601
    Abstract: A method for forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The method includes flowing a process gas that includes a silicon-containing source, an oxygen-containing source and a fluorine-containing source into the substrate processing chamber and forming a plasma from said process gas. The substrate is heated to a temperature above 450° C. during deposition of said silicon oxide layer and the deposited layer has a fluorine content of less than 1.0 atomic percent.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: May 25, 2004
    Assignee: Applied Materials Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt
  • Patent number: 6715496
    Abstract: A method and apparatus for cleaning a semiconductor wafer processing system comprising a turbomolecular pump. In one embodiment, the invention may be reduced to practice by first supplying a cleaning agent to a chamber; pumping the cleaning agent from the chamber through an the exhaust port; at least partially opening a gate valve; and drawing at least a portion of the cleaning agent through the gate valve and into the turbomolecular pump.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: April 6, 2004
    Assignee: Applied Materials Inc.
    Inventors: Michael Chiu Kwan, Alan W. Collins, Jalel Hamila, Padmanabhan Krishnaraj, Zhengquan Tan
  • Patent number: 6682603
    Abstract: A substrate support utilized in high-density plasma chemical vapor deposition (HDP-CVD) processing functions as a radio frequency (RF) electrode (e.g., a bias RF cathode). An upper surface of the substrate support has a central upper surface portion and a peripheral upper surface portion, with the peripheral upper surface portion recessed relative to the central upper surface portion. The upper surface of the support extends beyond an outer edge of the substrate when the substrate is positioned on the substrate support. This extension in the support upper surface may enhance process performance by reducing electric field edge effects, as well as by improving directional distribution of ions traveling to the substrate.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: January 27, 2004
    Assignee: Applied Materials Inc.
    Inventors: Sudhir Gondhalekar, Dongqing Li, Canfeng Lai, Zhengquan Tan, Steve H. Kim, Alexander Veyster
  • Publication number: 20030211757
    Abstract: A substrate support utilized in high-density plasma chemical vapor deposition (HDP-CVD) processing functions as a radio frequency (RF) electrode (e.g., a bias RF cathode). An upper surface of the substrate support has a central upper surface portion and a peripheral upper surface portion, with the peripheral upper surface portion recessed relative to the central upper surface portion. The upper surface of the support extends beyond an outer edge of the substrate when the substrate is positioned on the substrate support. This extension in the support upper surface may enhance process performance by reducing electric field edge effects, as well as by improving directional distribution of ions traveling to the substrate.
    Type: Application
    Filed: May 7, 2002
    Publication date: November 13, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sudhir Gondhalekar, Dongqing Li, Canfeng Lai, Zhengquan Tan, Steve H. Kim, Alexander Veyster
  • Publication number: 20030203637
    Abstract: A method of depositing a high density plasma silicon oxide layer having improved gapfill capabilities. In one embodiment the method includes flowing a process gas consisting of a silicon-containing source, an oxygen-containing source and helium into a substrate processing chamber and forming a plasma from the process gas. The ratio of the flow rate of the helium with respect to the combined flow rate of the silicon source and oxygen source is between 0.5:1 and 3.0:1 inclusive. In one particular embodiment, the process gas consists of monosilane (SiH4), molecular oxygen (O2) and helium.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Zhong Qiang Hua, Dong Qing Li, Zhengquan Tan, Zhuang Li, Michael Chiu Kwan, Bruno Geoffrion, Padmanabhan Krishnaraj
  • Publication number: 20030164224
    Abstract: A method and apparatus for cleaning a semiconductor wafer processing system comprising a turbomolecular pump. In one embodiment, the invention may be reduced to practice by first supplying a cleaning agent to a chamber; pumping the cleaning agent from the chamber through an the exhaust port; at least partially opening a gate valve; and drawing at least a portion of the cleaning agent through the gate valve and into the turbomolecular pump.
    Type: Application
    Filed: April 3, 2003
    Publication date: September 4, 2003
    Inventors: Michael Chiu Kwan, Alan W. Collins, Jalel Hamila, Padmanabhan Krishnaraj, Zhengquan Tan
  • Publication number: 20030159656
    Abstract: A substrate processing apparatus comprising a substrate processing chamber, a gas distribution system operatively coupled to the chamber, a high density plasma power source, a controller operatively coupled to the gas distribution system and the high density plasma power source and a memory coupled to the controller. The memory includes computer instructions embodied in a computer-readable format. The computer instructions comprise (i) instructions that control the gas distribution system to flow a process gas comprising a silane gas, an oxygen-containing source, an inert gas and a hydrogen-containing source that is either molecular hydrogen or a hydride gas that does not include silicon, boron or phosphorus and (ii) instructions that control the high density plasma source to form a plasma having an ion density of at least 1×1011 ions/cm3 from the process gas to deposit the silicon oxide layer over the substrate.
    Type: Application
    Filed: March 25, 2003
    Publication date: August 28, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt, Tetsuya Ishikawa
  • Patent number: 6596123
    Abstract: A method and apparatus for cleaning a semiconductor wafer processing system comprising a turbomolecular pump. In one embodiment, the invention may be reduced to practice by first supplying a cleaning agent to a chamber; pumping the cleaning agent from the chamber through an the exhaust port; at least partially opening a gate valve; and drawing at least a portion of the cleaning agent through the gate valve and into the turbomolecular pump.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: July 22, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Michael Chiu Kwan, Alan W. Collins, Jalel Hamila, Padmanabhan Krishnaraj, Zhengquan Tan
  • Patent number: 6596653
    Abstract: A method of forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The silicon oxide layer is formed by flowing a process gas including a silicon-containing source, an oxygen-containing source, an inert gas and a hydrogen-containing source into the substrate processing chamber and forming a high density plasma (i.e., a plasma having an ion density of at least 1×1011 ions/cm3) from the process gas to deposit said silicon oxide layer over said substrate. In one embodiment, the hydrogen-containing source in the process gas is selected from the group of H2, H2O, NH3, CH4 and C2H6.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: July 22, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt, Tetsuya Ishikawa
  • Publication number: 20030029475
    Abstract: A process for removing unwanted deposition build-up from one or more interior surfaces of a substrate processing chamber after depositing a layer of material over a substrate disposed in the chamber. In one embodiment the process comprises transferring the substrate out of the chamber; flowing a first gas into the substrate processing chamber and forming a plasma within the chamber from the first gas in order to heat the chamber; and thereafter, extinguishing the plasma, flowing an etchant gas into a remote plasma source, forming reactive species from the etchant gas and transporting the reactive species into the substrate processing chamber to etch the unwanted deposition build-up.
    Type: Application
    Filed: May 21, 2002
    Publication date: February 13, 2003
    Applicant: APPLIED MATERIALS, INC., A Delaware corporation
    Inventors: Zhong Qiang Hua, Zhengquan Tan, Zhuang Li, Kent Rossman
  • Publication number: 20020187655
    Abstract: A method for forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The method includes flowing a process gas that includes a silicon-containing source, an oxygen-containing source and a fluorine-containing source into the substrate processing chamber and forming a plasma from said process gas. The substrate is heated to a temperature above 450° C. during deposition of said silicon oxide layer and the deposited layer has a fluorine content of less than 1.0 atomic percent.
    Type: Application
    Filed: May 11, 2001
    Publication date: December 12, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt
  • Publication number: 20020187656
    Abstract: A method of forming a silicon oxide layer over a substrate disposed in a high density plasma substrate processing chamber. The silicon oxide layer is formed by flowing a process gas including a silicon-containing source, an oxygen-containing source, an inert gas and a hydrogen-containing source into the substrate processing chamber and forming a high density plasma (i.e., a plasma having an ion density of at least 1×1011 ions/cm3) from the process gas to deposit said silicon oxide layer over said substrate. In one embodiment, the hydrogen-containing source in the process gas is selected from the group of H2, H2O, NH3, CH4 and C2H6.
    Type: Application
    Filed: May 11, 2001
    Publication date: December 12, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Zhengquan Tan, Dongqing Li, Walter Zygmunt, Tetsuya Ishikawa