Patents by Inventor Zhengru GUO

Zhengru GUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240235145
    Abstract: A divided-pulse laser regeneration amplification apparatus includes: a signal light coupling component including a first half-wave plate, a first polarization beam splitter, a first Faraday rotator and a second half-wave plate placed in sequence; and a divided-pulse laser regeneration amplification component including a second polarization beam splitter and a third reflector, the second polarization beam splitter is adjacent to the second half-wave plate and is in a same column as the third reflector and the second half-wave plate; a first quarter-wave plate, a Pockels cell and a first reflector are successively arranged on a first side of the second polarization beam splitter, and a third half-wave plate, a first pulse polarization separation component and a first non-linear pulse amplification component are successively arranged on a second side of the second polarization beam splitter.
    Type: Application
    Filed: October 18, 2023
    Publication date: July 11, 2024
    Inventors: Heping ZENG, Zhengru GUO, Xiaowei QIAN, Tingting LIU, Tianjun YAO
  • Publication number: 20240195137
    Abstract: The present disclosure provides a self-similar regenerative amplification method and an apparatus. The apparatus includes a broadband seed source, a spectrum shaping broader, a self-similar regenerative amplifier and a pulse compressor disposed in order of a light path. The spectrum shaping broader includes a time domain broader and a spectrum shaper. The time domain broader is configured to broaden the seed pulses, and fine-tune a width of the seed pulse. The spectrum shaper is configured to perform spectrum shaping on the broadened pulses to obtain saddle chirped pulses. The pulse regenerative amplification component includes a gain crystal and a nonlinear crystal. The self-similar regenerative amplifier receives the saddle chirped pulses, performs multiple stepwise amplifications and multiple nonlinear spectrum broadenings back and forth on the saddle chirped pulses, and output high-energy chirped pulses to the pulse compressor.
    Type: Application
    Filed: December 5, 2023
    Publication date: June 13, 2024
    Inventors: Heping ZENG, Zhengru GUO, Xiao WANG, Xiaowei QIAN, Tianjun YAO, Tingting LIU, Mengyun HU
  • Publication number: 20240136784
    Abstract: A divided-pulse laser regeneration amplification apparatus includes: a signal light coupling component including a first half-wave plate, a first polarization beam splitter, a first Faraday rotator and a second half-wave plate placed in sequence; and a divided-pulse laser regeneration amplification component including a second polarization beam splitter and a third reflector, the second polarization beam splitter is adjacent to the second half-wave plate and is in a same column as the third reflector and the second half-wave plate; a first quarter-wave plate, a Pockels cell and a first reflector are successively arranged on a first side of the second polarization beam splitter, and a third half-wave plate, a first pulse polarization separation component and a first non-linear pulse amplification component are successively arranged on a second side of the second polarization beam splitter.
    Type: Application
    Filed: October 17, 2023
    Publication date: April 25, 2024
    Inventors: Heping ZENG, Zhengru GUO, Xiaowei QIAN, Tingting LIU, Tianjun YAO
  • Publication number: 20230296911
    Abstract: Provided are a nonlinear polarization filtering method, device, and apparatus. The device comprises a pump source, a coupler, a birefringent medium, and several polarizers; wherein the pump source is applied to output a pump laser, so as to make a photo-induced birefringence effect occur at the birefringent medium; the polarizer is applied to polarize a signal light according to a preset polarizing angle; and the coupler is applied to couple the pump laser and the signal light into the birefringent medium, wherein an angle except 0° exists between the birefringent medium and the preset polarizing angle of the polarizer.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 21, 2023
    Inventors: Heping ZENG, Zhengru GUO, Tingting LIU
  • Publication number: 20230291169
    Abstract: A frequency stabilizing system for high precision single-cavity multi-frequency comb includes a single-cavity multi-comb pulse oscillator, a frequency detection system, and a frequency feedback control system. The single-cavity multi-comb pulse oscillator is configured to output mode-locked pulse trains with a certain repetition rate difference at two or more central wavelengths. The frequency detection system is configured to detect the frequency signal, and output the corresponding electrical signal. The frequency feedback control system is configured to process the electrical signal from the frequency detection system, and transmit it to the frequency response component in the single-cavity multi-comb pulse oscillator to control a strain of the frequency response component, so as to realize feedback control on the frequency (repetition rate, repetition rate difference, and carrier envelope offset frequency) of the mode-locked pulse trains.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 14, 2023
    Inventors: Heping ZENG, Zhengru GUO, Tingting LIU
  • Publication number: 20230098039
    Abstract: An electrically tunable non-reciprocal phase shifter, an electrically tunable polarization filter, a NALM mode-locked laser and a Sagnac loop are provided. The electrically tunable non-reciprocal phase shifter includes a modulation crystal device, a birefringent crystal device, a Faraday rotator, and a fiber coupler. The phase shifter is configured to couple two beams of light to a fast axis and a slow axis of the modulation crystal device, respectively; and change a refractive index difference between the fast axis and the slow axis to introduce different phase delays for the two beams of the light, so as to control a non-reciprocal linear phase shift amount between the two beams of the light.
    Type: Application
    Filed: September 29, 2022
    Publication date: March 30, 2023
    Inventors: Heping ZENG, Tingting LIU, Zhengru GUO