Patents by Inventor Zhenjun Wu

Zhenjun Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11326449
    Abstract: Disclosed is a method for determining three-dimensional in-situ stress based on displacement measurement of borehole wall, including the following steps: selecting a testing borehole section for in-situ stress testing; arranging 6-9 measurement points in the testing borehole section; using a coring drill to perform a radial cut around the displacement measurement device to relieve the stress at the measurement point; cutting off the drilled core by the coring drill; recovering the sidewall coring device and removing the cores, and then measuring the elastic deformation parameters of each core; The beneficial effect of the technical scheme proposed in this disclosure is: the method provided by this disclosure overcomes the disadvantage that the measurement can only be performed at the bottom of a borehole and thus it has a wider application range.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: May 10, 2022
    Assignee: INSTITUTE OF ROCK AND SOIL MECHANICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhenjun Wu, Hua Tang, Yuqiao Qin
  • Publication number: 20210156249
    Abstract: Disclosed is a method for determining three-dimensional in-situ stress based on displacement measurement of borehole wall, including the following steps: selecting a testing borehole section for in-situ stress testing; arranging 6-9 measurement points in the testing borehole section; using a coring drill to perform a radial cut around the displacement measurement device to relieve the stress at the measurement point; cutting off the drilled core by the coring drill; recovering the sidewall coring device and removing the cores, and then measuring the elastic deformation parameters of each core; The beneficial effect of the technical scheme proposed in this disclosure is: the method provided by this disclosure overcomes the disadvantage that the measurement can only be performed at the bottom of a borehole and thus it has a wider application range.
    Type: Application
    Filed: February 26, 2020
    Publication date: May 27, 2021
    Inventors: ZHENJUN WU, HUA TANG, YUQIAO QIN
  • Publication number: 20150135644
    Abstract: A wound dressing comprising acylated chitosan fibre. The dressing has a wet strength of 0.3 N/cm or above. The acylated chitosan fibre may have a degree of substitution of 0.10-0.50. The acylated chitosan fibre may preferably have a degree of substitution of 0.20-0.40. The dressing may have an absorbency of 5-25 g/g of a solution containing 8.298 g/l of sodium chloride and 0.368 g/l of calcium chloride dehydrate as measured by BSEN 13726-12002 Part 1 Aspects of Absorbency. The base material of the dressing may be chitosan fibre that has been chemically modified through an acylation process using anhydride and ethanol as the solvent. A method of manufacturing the wound dressing involves reacting chitosan fibre with anhydride and making acylated chitosan felt through a nonwoven process, and through cutting, packing and sterilizing processes.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 21, 2015
    Inventors: Xiaohui Mo, Xiaodong Wang, Zhenjun Wu
  • Publication number: 20140044758
    Abstract: A wound dressing with bacteriostatic and hygroscopicity, preparation method therefore, and the use thereof in preparing a product for treating chronic wounds. The dressing comprises chitosan fiber and modified cellulose fiber.
    Type: Application
    Filed: March 2, 2012
    Publication date: February 13, 2014
    Inventors: Xiaodong Wang, Dawei Zhang, Xiaohui Mo, Qiulan Lv, Zhenjun Wu