Patents by Inventor Zhensheng Jia

Zhensheng Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11689286
    Abstract: A skew compensation system for a coherent optical communication network includes a transmitter and a receiver in operable communication with an optical transport medium of a coherent optical network. The transmitter includes a first transmitter-side tunable delay line configured to delay transmission of a first signal by a first skew amount, thereby producing a pre-compensated first signal. The receiver includes a first receiver-side tunable delay line configured to delay transmission of the pre-compensated first signal to a digital signal processor (DSP) of the receiver by a second skew amount, thereby producing a final signal that is both pre-compensated and post-compensated (i.e., fully compensated).
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: June 27, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11683102
    Abstract: A method for allocating bandwidth to a first ONU, a second ONU, M1 ONUs, and M2 ONUs includes, during an allocation cycle, (i) granting a respective upstream time slot to, of a plurality of N ONUs, only each of the M1 ONUs, and (ii) granting a first upstream time slot to the first ONU. Each of the M1 ONUs and M2 ONUs is one of the plurality of N ONUs. The method also includes, during a subsequent cycle, (i) granting a respective upstream time slot to, of the plurality of N ONUs, only each of the M2 ONUs. The N ONUs includes a skipped-ONU that is one of either, and not both, the M1 ONUs and the M2 ONUs. The method includes, during the subsequent allocation cycle, granting a second upstream time slot to a second ONU, which is not one of the plurality of N ONUs.
    Type: Grant
    Filed: October 16, 2021
    Date of Patent: June 20, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Haipeng Zhang, Junwen Zhang, Jingjie Zhu, Mu Xu, Zhensheng Jia
  • Patent number: 11677540
    Abstract: A method for synchronizing a data frame and data symbols in a communication system includes generating a training sequence including a serial sequence of data symbols that are conjugate symmetric, inserting the training sequence in a transmitter-side data frame, converting constituent data symbols of the transmitter-side data frame to communication signals, transmitting the communication signals from a transmitter to a receiver, converting the communication signals to a stream of received data symbols, detecting presence of the training sequence in the stream of received data symbols, and identifying a position of a received data frame from the presence of the training sequence.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: June 13, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Junwen Zhang, Mu Xu, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11677477
    Abstract: Methods, systems, and devices for a decision directed multi-modulus searching algorithm are described. A receiver may receive a signal including a set of data symbols. The receiver may iteratively determine a set of centroids for demodulating the set of data symbols (e.g., as part of a training procedure). The centroids may be used to demodulate the set of data symbols according to a modulation constellation associated with the set of data symbols. The training procedure may include, for each data symbol of a subset of data symbols, assigning a centroid of the set of centroids to each data symbol and updating the set of centroids based on assigning the centroid to each data symbol. The receiver may demodulate the set of data symbols based on the updated set of centroids.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: June 13, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia
  • Publication number: 20230179306
    Abstract: An optical network communication system utilizes a coherent passive optical network (PON). The system includes an optical line terminal (OLT) having a downstream transmitter and an upstream receiver system configured for time-wavelength division coherent detection. The system further includes a splitter in operable communication with the OLT, and a plurality of optical network units (ONUs) in operable communication with the splitter. Each of the plurality of ONUs is configured to (i) receive downstream coherent burst signals from the OLT, and (ii) transmit at least one upstream burst signal to the OLT. The upstream receiver system further includes a power control module and a local oscillator (LO) configured to generate an optical LO signal The power control module is configured to adaptively control, in real-time, a power level of the optical LO signal.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 8, 2023
    Inventors: Junwen Zhang, Luis Alberto Campos, Zhensheng Jia
  • Patent number: 11646813
    Abstract: A digital receiver is configured to process a polarization multiplexed carrier from a communication network. The polarization multiplexed carrier includes a first polarization and a second polarization. The receiver includes a first lane for transporting a first input signal of the first polarization, a second lane for transporting a second input signal of the second polarization, a dynamic phase noise estimation unit disposed within the first lane and configured to determine a phase noise estimate of the first input signal, a first carrier phase recovery portion configured to remove carrier phase noise from the first polarization based on a combination of the first input signal and a function of the determined phase noise estimate, and a second carrier phase recovery portion configured to remove carrier phase noise from the second polarization based on a combination of the second input signal and the function of the determined phase noise estimate.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: May 9, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Zhensheng Jia, Junwen Zhang, Mu Xu, Haipeng Zhang, Luis Alberto Campos, Curtis Dean Knittle
  • Patent number: 11641293
    Abstract: A method and apparatus of distortion compensation during data transmission uses an interweaved look-up table (ILUT) to mitigate residual signal distortions in a signal transmitted over a transmission link. The ILUT interweaves states across both an I and a Q tributary to calculate mean error and an extended symbol basis. As a result, the method works particularly well against two-dimensional distortions like nonlinearity, IQ-imbalance, and quadrature error. The method may be used for either pre-compensation when it is combined with k-means clustering in a transmitter or post-compensation when it is combined with maximum likelihood (ML) detection in a receiver.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 2, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Junwen Zhang, Haipeng Zhang, Luis Alberto Campos
  • Publication number: 20230118770
    Abstract: A full duplex communication network includes an optical transmitter end having a first coherent optics transceiver, an optical receiver end having a second coherent optics transceiver, and an optical transport medium operably coupling the first coherent optics transceiver to the second coherent optics transceiver. The first coherent optics transceiver is configured to (i) transmit a downstream optical signal at a first wavelength, and (ii) simultaneously receive an upstream optical signal at a second wavelength. The second coherent optics transceiver is configured to (i) receive the downstream optical signal, and (ii) simultaneously transmit the upstream optical signal. The first wavelength has a first center frequency separated from a second center frequency of the second wavelength.
    Type: Application
    Filed: October 31, 2022
    Publication date: April 20, 2023
    Inventors: Zhensheng Jia, Luis Alberto Campos, Jing Wang, Mu Xu, Haipeng Zhang, Curtis Dean Knittle
  • Patent number: 11632178
    Abstract: An injection locked transmitter for an optical communication network includes a master seed laser source input substantially confined to a single longitudinal mode, an input data stream, and a laser injected modulator including at least one slave laser having a resonator frequency that is injection locked to a frequency of the single longitudinal mode of the master seed laser source. The laser injected modulator is configured to receive the master seed laser source input and the input data stream, and output a laser modulated data stream.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: April 18, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Zhensheng Jia, Luis Alberto Campos, Curtis Dean Knittle
  • Patent number: 11616645
    Abstract: A first node of a network includes a quantum transmitter, a classical transceiver, and an initial-key generator that cooperate with a second node to transmit an initial key via the quantum transmitter. The first node includes a key-series generator that (i) encrypts a first unencrypted key of a series of unencrypted keys to generate a first encrypted key of a series of encrypted keys and (ii) encrypts each subsequent unencrypted key of the series of unencrypted keys with a preceding unencrypted key of the series of unencrypted keys to generate a subsequent encrypted key of the series of encrypted keys. The encrypted keys are transmitted to the second node. The first node includes one or both of a decryptor and an encryptor. The decryptor decrypts encrypted data using a last unencrypted key of the series of unencrypted keys. The encryptor encrypts unencrypted data using the last unencrypted key.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: March 28, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Jing Wang, Bernardo Huberman, Luis Alberto Campos, Zhensheng Jia
  • Publication number: 20230040543
    Abstract: A communication network includes a coherent optics transmitter, a coherent optics receiver, an optical transport medium operably coupling the coherent optics transmitter to the coherent optics receiver, and a coherent optics interface. The coherent optics interface includes a lineside interface portion, a clientside interface portion, and a control interface portion.
    Type: Application
    Filed: October 3, 2022
    Publication date: February 9, 2023
    Inventors: Luis Alberto Campos, Zhensheng Jia, Matthew D. Schmitt
  • Patent number: 11575448
    Abstract: An optical network communication system utilizes a coherent passive optical network (PON). The system includes an optical line terminal (OLT) having a downstream transmitter and an upstream receiver system configured for time-wavelength division coherent detection. The system further includes a splitter in operable communication with the OLT, and a plurality of optical network units (ONUs) in operable communication with the splitter. Each of the plurality of ONUs is configured to (i) receive downstream coherent burst signals from the OLT, and (ii) transmit at least one upstream burst signal to the OLT. The upstream receiver system further includes a power control module and a local oscillator (LO) configured to generate an optical LO signal The power control module is configured to adaptively control, in real-time, a power level of the optical LO signal.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 7, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Junwen Zhang, Luis Alberto Campos, Zhensheng Jia
  • Patent number: 11564020
    Abstract: A radio frequency (RF) beam transmission component having optical inputs and electrical outputs may include a wavelength selective switch (WSS) that has a plurality of optical WSS outputs. Each optical WSS output may be configured to transmit one or more wavelengths of the incoming optical signals. The RF beam transmission component may include a plurality of photodetectors (PD), each photodetector having an optical PD input coupled to one or more of said plurality of optical WSS outputs and a corresponding electrical output of a plurality of PD electrical outputs. The RF beam transmission component may further include a lens that has a plurality of electrical inputs and each electrical input may be electrically coupled to at least one of the plurality of electrical PD outputs. The lens may further have a plurality of electrical lens output ports.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: January 24, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Luis Alberto Campos, Zhensheng Jia, Lin Cheng
  • Patent number: 11563508
    Abstract: A communications network includes a central communication unit, an optical transport medium, and a plurality of remote radio base stations. The central communication unit generates, within a selected millimeter-wave frequency band, a plurality of adjacent two-tone optical frequency conjugate pairs. Each conjugate pair includes a first optical tone carrying a modulated data signal, and a second optical tone carrying a reference local oscillator signal. The optical transport medium transports the plurality of two-tone conjugate pairs to the plurality of radio base stations, and each base station receives at least one conjugate pair at an optical front end thereof. The optical front end separates the first optical tone from the second optical tone, and converts the first optical tone into a millimeter-wave radio frequency electrical signal.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: January 24, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Ruoyu Sun, Balkan Kecicioglu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11563445
    Abstract: A method for differentiator-based compression of digital data includes (a) multiplying a tap-weight vector by an original data vector to generate a predicted signal, the original data vector comprising N sequential samples of an original signal, N being an integer greater than or equal to one, (b) using a subtraction module, subtracting the predicted signal from a sample of the original signal to obtain an error signal, (c) using a quantization module, quantizing the error signal to obtain a quantized error signal, and (d) updating the tap-weight vector according to changing statistical properties of the original signal.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: January 24, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Jing Wang, Luis Alberto Campos
  • Publication number: 20230017887
    Abstract: An optical access network includes an optical hub having at least one processor. The network further includes a plurality of optical distribution centers connected to the optical hub by a plurality of optical fiber segments, respectively, and a plurality of geographic fiber node serving areas. Each fiber node serving area of the plurality of fiber node serving areas includes at least one optical distribution center of the plurality of optical distribution centers. The network further includes a plurality of endpoints. Each endpoint of the plurality of endpoints is in operable communication with at least one optical distribution center. The network further includes a point-to-point network provisioning system configured to (i) evaluate each potential communication path over the plurality of optical fiber segments between a first endpoint and a second endpoint, and (ii) select an optimum fiber path based on predetermined path selection criteria.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 19, 2023
    Inventors: Luis Alberto Campos, Zhensheng Jia, Carmela Stuart
  • Patent number: 11546058
    Abstract: A method for chromatic dispersion pre-compensation in an optical communication network includes (1) distorting an original modulated signal according to an inverse of a transmission function of the optical communication network, to generate a compensated signal, (2) modulating a magnitude of an optical signal in response to a magnitude of the compensated signal, and (3) modulating a phase of the optical signal, after modulating the magnitude of the optical signal, in response to a phase of the compensated signal.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: January 3, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Haipeng Zhang, Luis Alberto Campos, Junwen Zhang
  • Patent number: 11546061
    Abstract: An injection locked transmitter for an optical communication network includes a master seed laser source input substantially confined to a single longitudinal mode, an input data stream, and a laser injected modulator including at least one slave laser having a resonator frequency that is injection locked to a frequency of the single longitudinal mode of the master seed laser source. The laser injected modulator is configured to receive the master seed laser source input and the input data stream, and output a laser modulated data stream.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 3, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Junwen Zhang, Zhensheng Jia, Luis Alberto Campos, Haipeng Zhang, Mu Xu, Jing Wang, Curtis Dean Knittle, Chuang Zhou
  • Patent number: 11539442
    Abstract: A method for automatic power and modulation management in a communication network includes (1) generating a management function of (a) mutual information per symbol (MIPS) of the communication network and (b) output power (P) of a transmitter of the communication network, determining a selected MIPS value and a selected P value which achieve a maximum value of the management function, and causing the transmitter of the communication network to operate according to the selected MIPS value and the selected P value.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: December 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Luis Alberto Campos, Chris Stengrim
  • Patent number: 11540032
    Abstract: An optical network communication system utilizes a passive optical network (PON) and includes an optical line terminal (OLT) having a downstream transmitter and an upstream receiver, and an optical network unit (ONU) having a downstream receiver and an upstream transmitter. The downstream transmitter is configured to provide a coherent downlink transmission, and the downstream receiver is configured to obtain one or more downstream parameters from the coherent downlink transmission. The system further includes a long fiber configured to carry the coherent downlink transmission between the OLT and the ONU. The ONU is configured to communicate to the OLT a first upstream ranging request message, the OLT is configured to communicate to the ONU a first downstream acknowledgement in response to the upstream first ranging request message, and the ONU is configured to communicate to the OLT a second upstream ranging request message based on the first downstream acknowledgement.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: December 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Luis Alberto Campos, Zhensheng Jia, Matthew Schmitt, Curtis Dean Knittle