Patents by Inventor Zhi-Chang Lin

Zhi-Chang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170141037
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming a fin structure on a substrate; forming a dummy gate over the fin structure; forming spacers on sides of the dummy gate; forming a doped region within the fin structure; replacing the dummy gate with a metal gate; replacing an upper portion of the metal gate with a first dielectric layer; forming a conductive layer directly on the doped region; replacing an upper portion of the conductive layer with a second dielectric layer; removing the first dielectric layer thereby exposing a sidewall of the spacer; removing an upper portion of the spacer to thereby expose a sidewall of the second dielectric layer; removing at least a portion of the second dielectric layer to form a trench; and forming a conductive plug in the trench.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 18, 2017
    Inventors: Wei-Hao Wu, Chia-Hao Chang, Chih-Hao Wang, Jia-Chuan You, Yi-Hsiung Lin, Zhi-Chang Lin, Chia-Hao Kuo, Ke-Jing Yu
  • Patent number: 9627385
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Publication number: 20170053827
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming a first gate structure over a substrate, forming a source/drain feature in the substrate adjacent the first gate structure, forming a dielectric layer over the first gate structure and the source/drain feature, removing a portion of the dielectric layer to form a first trench exposing the first gate structure and the source/drain feature, forming a first conductive feature in the first trench, removing a first portion of the first gate structure to form a second trench and forming a second conductive feature in the second trench.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 23, 2017
    Inventors: Chih-Hao Wang, Chun-Hsiung Lin, Chia-Hao Chang, Jia-Chuan You, Wei-Hao Wu, Yi-Hsiung Lin, Zhi-Chang Lin
  • Patent number: 9564363
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming a first gate structure over a substrate, forming a source/drain feature in the substrate adjacent the first gate structure, forming a dielectric layer over the first gate structure and the source/drain feature, removing a portion of the dielectric layer to form a first trench exposing the first gate structure and the source/drain feature, forming a first conductive feature in the first trench, removing a first portion of the first gate structure to form a second trench and forming a second conductive feature in the second trench.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: February 7, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Chun-Hsiung Lin, Chia-Hao Chang, Jia-Chuan You, Wei-Hao Wu, Yi-Hsiung Lin, Zhi-Chang Lin
  • Patent number: 9496397
    Abstract: The present disclosure relates to a Fin field effect transistor (FinFET) device having epitaxial enhancement structures, and an associated method of fabrication. In some embodiments, the FinFET device has a semiconductor substrate having a plurality of isolation regions overlying the semiconductor substrate. A plurality of three-dimensional fins protrude from a top surface of the semiconductor substrate at locations between the plurality of isolation regions. Respective three-dimensional fins have an epitaxial enhancement structure that introduces a strain into the three-dimensional fin. The epitaxial enhancement structures are disposed over a semiconductor material within the three-dimensional fin at a position that is more than 10 nanometers above a bottom of an adjacent isolation region. Forming the epitaxial enhancement structure at such a position provides for sufficient structural support to avoid isolation region collapse.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20160056157
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Application
    Filed: August 28, 2015
    Publication date: February 25, 2016
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Patent number: 9153668
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: October 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang
  • Publication number: 20150054039
    Abstract: The present disclosure relates to a Fin field effect transistor (FinFET) device having epitaxial enhancement structures, and an associated method of fabrication. In some embodiments, the FinFET device has a semiconductor substrate having a plurality of isolation regions overlying the semiconductor substrate. A plurality of three-dimensional fins protrude from a top surface of the semiconductor substrate at locations between the plurality of isolation regions. Respective three-dimensional fins have an epitaxial enhancement structure that introduces a strain into the three-dimensional fin. The epitaxial enhancement structures are disposed over a semiconductor material within the three-dimensional fin at a position that is more than 10 nanometers above a bottom of an adjacent isolation region. Forming the epitaxial enhancement structure at such a position provides for sufficient structural support to avoid isolation region collapse.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 26, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Chao Hsiung Wang, Chi-Wen Liu
  • Publication number: 20140346607
    Abstract: A fin field effect transistor (FinFET) having a tunable tensile strain and an embodiment method of tuning tensile strain in an integrated circuit are provided. The method includes forming a source/drain region on opposing sides of a gate region in a fin, forming spacers over the fin, the spacers adjacent to the source/drain regions, depositing a dielectric between the spacers; and performing an annealing process to contract the dielectric, the dielectric contraction deforming the spacers, the spacer deformation enlarging the gate region in the fin.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Guan-Lin Chen, Ting-Hung Hsu, Jiun-Jia Huang