Patents by Inventor Zhibin Yu

Zhibin Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11509412
    Abstract: Systems and methods of initial acquisition in a NR system are described. A UE receives time and frequency superposed SSBs from a gNB. If the PSS and SSS of each SSB is independent of a block index of the SSB, the UE receives an additional reference signal scrambled by a beam index of the SSB and uses the reference signal to discriminate between the SSBs. The reference signal is FDMed within a null-subcarrier region of the SSB or outside of the SSB. If the PSS and SSS of each SSB is scrambled using the block index, the UE separates the PBCH measurements, iteratively identifies a block index associated with a DMRS of the PBCH with the highest L1-RSRP level measurement, decodes and reconstructs the PBCH, and subtracts the reconstructed PBCH from the SSB before transmitting an indication of the PBCH with the highest L1-RSRP level measurement to the gNB.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: November 22, 2022
    Assignee: Apple Inc.
    Inventors: Zhibin Yu, Dae Won Lee
  • Publication number: 20220353652
    Abstract: A communication device for multi-radio access technology (RAT) communications includes one or more processors and a plurality of transceivers. Each transceiver is configured to operate in at least one RAT of a plurality of RATs. The processors are configured to establish connection with a second communication device using a first transceiver of the plurality of transceivers and a first RAT of the plurality of RATs. A first data stream associated with a communication link connected to the second communication device and a third communication device is receive via a convergence function at the second communication device. The communication link uses a second RAT of the plurality of RATs. A code sequence is applied to a second data stream to generate an encoded second data stream, which is transmitted to the third communication device via a second communication link established based on information received via the first data stream.
    Type: Application
    Filed: February 23, 2022
    Publication date: November 3, 2022
    Inventors: Stefan Fechtel, Kilian Peter Anton Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Publication number: 20220353650
    Abstract: Disclosed herein is a communication device for vehicular radio communications. The communication device includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices. The one or more processors also determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology. The one or more processors also transmit the channel resource allocation to the plurality of vehicular communication devices.
    Type: Application
    Filed: November 26, 2021
    Publication date: November 3, 2022
    Inventors: Carlos ALDANA, Biljana BADIC, Dave CAVALCANTI, Debabani CHOUDHURY, Christian DREWES, Jong-Kae FWU, Bertram GUNZELMANN, Nageen HIMAYAT, Ingolf KARLS, Duncan KITCHIN, Markus Dominik MUECK, Bernhard RAAF, Domagoj SIPRAK, Harry SKINNER, Christopher STOBART, Shilpa TALWAR, Zhibin YU
  • Publication number: 20220345907
    Abstract: Examples relate to processing circuitry, processing means, methods and computer programs for a base station and a user equipment. The processing circuitry for the base station is configured to select one of a first uplink beamforming management mode and a second uplink beamforming mode for a beamformed uplink communication between a user equipment and the base station. The selection is based on a path loss on a first wireless channel between the base station and the user equipment and based on a path loss on a second wireless channel between the user equipment and the base station. The processing circuitry is configured to provide an instruction related to the selection of the first or second uplink beamforming management mode to the user equipment.
    Type: Application
    Filed: December 23, 2019
    Publication date: October 27, 2022
    Inventor: Zhibin YU
  • Patent number: 11463212
    Abstract: A communication device comprises a receiver including at least two receive antennas and configured to receive at least one reference signal of a plurality of reference signals, each reference signal being transmitted from at least one base station at a predefined reference signal transmission time; a controller configured to switch between at least two receive configurations of the at least two antennas during a reception period of the at least one reference signal; and a signal quality determiner configured to determine a parameter indicative of a first signal quality of the received reference signal for each receive configuration.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: October 4, 2022
    Assignee: Apple Inc.
    Inventors: Zhibin Yu, Michael Ruder, Holger Neuhaus, Yeong-Sun Hwang, Bertram Gunzelmann
  • Patent number: 11455189
    Abstract: The application provides a task scheduling simulation system, comprising a data preprocessing subsystem and a task scheduling subsystem. The data preprocessing subsystem filters the input cloud computing log information for abnormal data and extracts the running time of each task. The task scheduling subsystem enqueues or dequeues tasks from the batch task and real-time task running queues of each node, and keeps the tasks currently running in the cluster consistent with the actual production environment, and updates the number of CPU cores and the used and available memory capacity of each node according to resource requirement of each task. The mixed scheduling simulation of batch tasks and online tasks can be realized, and the resource simulation of the heterogeneous CPU core number and memory capacity of the cluster nodes can be simulated.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 27, 2022
    Assignee: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES
    Inventors: Zhibin Yu, Lele Li
  • Patent number: 11444668
    Abstract: A wireless device includes a transceiver including an antenna arrangement with at least two antennas, a communication processor configured to control communications of the wireless device with at least one further wireless device included in a network of wireless devices based on data relating to mutual connections between wireless devices included in the network, a beamforming controller configured to control a configuration of the at least two antennas to steer at least one beam for transmission of data based on beamforming information.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: September 13, 2022
    Assignee: Intel Corporation
    Inventors: Biljana Badic, Nuno Manuel Kiilerich Pratas, Markus Dominik Mueck, Zhibin Yu
  • Publication number: 20220276335
    Abstract: Techniques for observed time difference of arrival (OTDOA) positioning based on heterogeneous reference signals (RSs) are discussed. One example apparatus configured to be employed within a user equipment (UE) comprises receiver circuitry, a processor, and transmitter circuitry. The receiver circuitry can receive, from each of a plurality of evolved Node Bs (eNBs), one or more RSs of each of a plurality of distinct types of RSs. The processor can determine, for each of the eNBs, a time of arrival (TOA) of the one or more RSs of each of the plurality of distinct types of RSs; and compute, for each of the eNBs, a reference signal time difference (RSTD) based at least in part on the TOAs of the one or more RSs of each of the plurality of distinct types of RSs. The transmitter circuitry can transmit the RSTD computed for each of the eNBs.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Inventors: Seunghee Han, Alexey Khoryaev, Yang Tang, Zhibin Yu, Shafi Bashar
  • Patent number: 11424811
    Abstract: This disclosure relates to an antenna array circuitry for analog beamforming, the antenna array circuitry comprising: a plurality of antenna elements, wherein each antenna element is configured to receive a respective analog signal (r(1,t), r(2,t), r(N,t)), wherein the plurality of antenna elements is adjustable based on a code-word, wherein the code-word comprises respective phase configurations (?p(1), ?p(2), ?p(N)) of the plurality of antenna elements, wherein the code-word is based on a superposition of a predetermined set of basic code-words, wherein each basic code-word associates with a corresponding sub-beam, wherein a main radiation lobe of the corresponding sub-beam points in a predefined spatial direction.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 23, 2022
    Assignee: INTEL CORPORATION
    Inventors: Zhibin Yu, Ansgar Scherb, Andre Janssen, Bertram Gunzelmann, Yeong-Sun Hwang, Holger Neuhaus
  • Publication number: 20220260671
    Abstract: Methods, apparatus, systems and articles of manufacture to manage automotive radar coordination are disclosed. An example apparatus includes a resource manager to retrieve radar unit requirements, the radar unit requirements including at least one of a unit ID, current time information, vehicle position, and radar resource requirements, a resource multiplexer to perform at least one of time multiplexing and frequency multiplexing according to the radar resource requirements, and a resource hopper to at least perform one of frequency hopping and time hopping in response to detecting an amount of interference from other vehicles that exceeds an interference threshold.
    Type: Application
    Filed: September 24, 2019
    Publication date: August 18, 2022
    Inventors: Chulong CHEN, Zhibin YU, Alon COHEN, Qing XU, Saiveena KESARAJU, Oren SHALITA
  • Patent number: 11405079
    Abstract: This disclosure relates to a channel state information, CSI, acquisition circuitry, configured to: determine at least one channel covariance matrix estimate and interference-and-noise covariance matrix estimate based on at least one channel state information reference signal, CSI-RS, resource; select a restricted number of rank indicator, RI, hypotheses from a set of RI hypotheses for running a joint rank indicator-precoding matrix indicator, RI-PMI, search on the CSI-RS based channel covariance matrix estimate and interference-and-noise covariance matrix estimate to select an optimal RI value and associated PMI value, wherein the restricted number of RI hypotheses is in accordance with a run-time estimated CSI acquisition capability of the CSI acquisition circuitry; and execute the joint RI-PMI search based on the selected RI hypotheses.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Zhibin Yu, Ziyang Ju, Michael Ruder
  • Publication number: 20220240199
    Abstract: This disclosure relates to a baseband processor for processing down-converted and quantized radio frequency, RF, signals of an RF transceiver in baseband, wherein the baseband processor is configured to: detect an RF operation mode switching of the RF transceiver, and initiate a change of a voltage setting and an associated system clock rate of the baseband processor based on detecting the operation mode switching of the RF transceiver.
    Type: Application
    Filed: August 13, 2019
    Publication date: July 28, 2022
    Inventors: Thuyen Le, Zhibin Yu
  • Patent number: 11391811
    Abstract: Techniques for observed time difference of arrival (OTDOA) positioning based on heterogeneous reference signals (RSs) are discussed. One example apparatus configured to be employed within a user equipment (UE) comprises receiver circuitry, a processor, and transmitter circuitry. The receiver circuitry can receive, from each of a plurality of evolved Node Bs (eNBs), one or more RSs of each of a plurality of distinct types of RSs. The processor can determine, for each of the eNBs, a time of arrival (TOA) of the one or more RSs of each of the plurality of distinct types of RSs; and compute, for each of the eNBs, a reference signal time difference (RSTD) based at least in part on the TOAs of the one or more RSs of each of the plurality of distinct types of RSs. The transmitter circuitry can transmit the RSTD computed for each of the eNBs.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: July 19, 2022
    Assignee: Apple Inc.
    Inventors: Seunghee Han, Alexey Khoryaev, Yang Tang, Zhibin Yu, Shafi Bashar
  • Publication number: 20220201519
    Abstract: An approach is described for a user equipment (UE), wherein the UE includes radio front end circuitry and processor circuitry coupled to the radio front end circuitry. The processor circuitry receives a reference signal from a source device via a radio link, wherein the reference signal is one of the synchronization signal block (SSB) signal or channel state information reference signal (CSI-RS). The processor circuitry measures a quality of the reference signal, and measures an evaluation time of the reference signal. The processor circuitry determines a first indicator of the radio link based on the quality of the reference signal, and determine a second indicator of the radio link based on the evaluation time of the reference signal. The processor circuitry then determines a status of a connection of the radio link based on the first indicator and the second indicator of the radio link, and generate a message based the status of the connection.
    Type: Application
    Filed: March 30, 2020
    Publication date: June 23, 2022
    Applicant: Apple Inc.
    Inventors: Rui HUANG, Qiming LI, Jie CUI, Zhibin YU, Yang TANG, Hua LI
  • Publication number: 20220191762
    Abstract: The present application relates to wireless devices and components including apparatus, systems, and methods for two-stage cell reselection in New Radio (NR) systems operating on unlicensed spectrum. In some embodiments, a user equipment may be perform a pre-check of a public land mobile network associated with a target cell prior to cell reselection.
    Type: Application
    Filed: July 15, 2020
    Publication date: June 16, 2022
    Applicant: Apple Inc.
    Inventors: Rui Huang, Zhibin Yu, Jie Cui
  • Publication number: 20220191878
    Abstract: Systems and methods for improving the robustness of a DCI triggered beam update in 5G NR are disclosed herein. A g Node B (gNB) may associate a reference signal to a beam pattern (or beam configuration) and prepare Downlink Control Information (DCI) of a Physical Downlink Control Channel (PDCCH) that includes aperiodic Channel-State Information Reference Signal (AP CSI-RS) information indicating the beam pattern. A user equipment (UE) may decode the DCI, extract the AP CSI-RS information, update the beam pattern of a reference signal based on the AP CSI-RS information, and generate an uplink (UL) feedback message indicating that the PDCCH was successfully decoded by the UE. The gNB may then decode the uplink (UL) feedback message and, in response, update a receive (RX) beam of the gNB to correspond to the beam pattern associated to the reference signal.
    Type: Application
    Filed: May 1, 2020
    Publication date: June 16, 2022
    Inventors: Zhibin YU, Yushu ZHANG
  • Publication number: 20220182208
    Abstract: Techniques are provided for mitigating inter-carrier interference (ICI) due to frequency multiplexed downlink channels with mixed numerologies. For example, a base station allocates, for a user equipment (UE), a first downlink (DL) channel and a second DL channel that are frequency multiplexed in a same bandwidth part (BWP) and have different channel numerologies The base station determines a guard band interval between the first DL channel and the second DL channel based on one or more characteristics of the different channel numerologies, transmits DL transmissions to the UE, over the first DL channel and the second DL channel, using the guard band interval between the first DL channel and the second DL channel.
    Type: Application
    Filed: March 9, 2020
    Publication date: June 9, 2022
    Applicant: Apple Inc.
    Inventors: Zhibin YU, Rui HUANG, Jie CUI, Yang TANG, Hua LI
  • Publication number: 20220182898
    Abstract: A user equipment (UE) in a wireless network including a first next generation NodeB (gNB) and a second gNB for communicating with the UE performs operations. The operations include determining to transmit a first transmission (Tx) stream and a second Tx stream simultaneously to the first gNB and the second gNB for handing over communication with the UE from a first cell to a second cell, wherein the first gNB is a serving gNB in the first cell and the second gNB is a handover target gNB in the second cell and simultaneously transmitting within a same antenna panel of the UE the first transmission stream to the first gNB using a first polarization and the second transmission stream to the second gNB using a second polarization different from the first polarization.
    Type: Application
    Filed: May 8, 2020
    Publication date: June 9, 2022
    Inventors: Jie CUI, Zhibin YU, Yang TANG, Qiming LI, Qing XU
  • Publication number: 20220182867
    Abstract: A user equipment (UE) device is configured for performing a signal measurement for wireless communication in a new radio (NR) network. The UE is configured to determine a frequency range (FR) of a serving cell configured to send a signal that is measured by the UE using a signal measurement. The UE configures a measurement gap (MG) pattern to perform the signal measurement. Configuring the measurement gap includes determining that the frequency range of the serving cell includes frequencies of a second frequency range (FR2), determining that a measurement object (MO) configuration for the FR2 is available, setting a measurement gap repetition periodicity (MGRP) value for the signal measurement, and setting a measurement gap length (MGL) value for the signal measurement. The UE performs a signal measurement using the MGRP value and the MGL value.
    Type: Application
    Filed: May 1, 2020
    Publication date: June 9, 2022
    Inventors: Jie Cui, Yang Tang, Qiming Li, Zhibin Yu, Hua Li
  • Patent number: 11356999
    Abstract: Provided herein are a method and an apparatus for blind detection of Physical Downlink Control Channel (PDCCH) and Physical Downlink Shared Channel (PDSCH) using UE-specific reference signals. In an embodiment, the disclosure provides an apparatus for a UE, comprising circuitry configured to: measure a UE-specific Demodulation Reference Signal (DMRS) associated with a PDCCH; compute a first measurement metric M1 based on the UE-specific DMRS associated with the PDCCH before decoding the PDCCH; decode the PDCCH based on the first measurement metric M1; and decode PDSCH based on the decoded PDCCH. The disclosure may further, based on the corresponding PDCCH DMRS and/or PDSCH DMRS, determine if a PDSCH grant in a decoded PDCCH is valid or not, detect a repeated PDSCH grant in a slot, and detect cross-slot DMRS phase continuity between continuous slots.
    Type: Grant
    Filed: June 30, 2018
    Date of Patent: June 7, 2022
    Assignee: Intel Corporation
    Inventors: Xiaojun Ma, Zhibin Yu