Patents by Inventor Zhi-Cheng Lin

Zhi-Cheng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967594
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a stack of semiconductor layers spaced apart from and aligned with each other, a first source/drain epitaxial feature in contact with a first one or more semiconductor layers of the stack of semiconductor layers, and a second source/drain epitaxial feature disposed over the first source/drain epitaxial feature. The second source/drain epitaxial feature is in contact with a second one or more semiconductor layers of the stack of semiconductor layers. The structure further includes a first dielectric material disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature and a first liner disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature. The first liner is in contact with the first source/drain epitaxial feature and the first dielectric material.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Cheng Chen, Zhi-Chang Lin, Jung-Hung Chang, Lo Heng Chang, Chien Ning Yao, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20240112959
    Abstract: A method of fabricating a device includes forming a dummy gate over a plurality of fins. Thereafter, a first portion of the dummy gate is removed to form a first trench that exposes a first hybrid fin and a first part of a second hybrid fin. The method further includes filling the first trench with a dielectric material disposed over the first hybrid fin and over the first part of the second hybrid fin. Thereafter, a second portion of the dummy gate is removed to form a second trench and the second trench is filled with a metal layer. The method further includes etching-back the metal layer, where a first plane defined by a first top surface of the metal layer is disposed beneath a second plane defined by a second top surface of a second part of the second hybrid fin after the etching-back the metal layer.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Kuan-Ting PAN, Zhi-Chang LIN, Yi-Ruei JHAN, Chi-Hao WANG, Huan-Chieh SU, Shi Ning JU, Kuo-Cheng CHIANG
  • Publication number: 20240105719
    Abstract: Examples of an integrated circuit with FinFET devices and a method for forming the integrated circuit are provided herein. In some examples, an integrated circuit device includes a substrate, a fin extending from the substrate, a gate disposed on a first side of the fin, and a gate spacer disposed alongside the gate. The gate spacer has a first portion extending along the gate that has a first width and a second portion extending above the first gate that has a second width that is greater than the first width. In some such examples, the second portion of the gate spacer includes a gate spacer layer disposed on the gate.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 28, 2024
    Inventors: Kuo-Cheng Ching, Huan-Chieh Su, Zhi-Chang Lin, Chih-Hao Wang
  • Publication number: 20240096895
    Abstract: According to one example, a semiconductor device includes a substrate and a fin stack that includes a plurality of nanostructures, a gate device surrounding each of the nanostructures, and inner spacers along the gate device and between the nanostructures. A width of the inner spacers differs between different layers of the fin stack.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Jui-Chien Huang, Shih-Cheng Chen, Chih-Hao Wang, Kuo-Cheng Chiang, Zhi-Chang Lin, Jung-Hung Chang, Lo-Heng Chang, Shi Ning Ju, Guan-Lin Chen
  • Publication number: 20240088145
    Abstract: Examples of an integrated circuit with gate cut features and a method for forming the integrated circuit are provided herein. In some examples, a workpiece is received that includes a substrate and a plurality of fins extending from the substrate. A first layer is formed on a side surface of each of the plurality of fins such that a trench bounded by the first layer extends between the plurality of fins. A cut feature is formed in the trench. A first gate structure is formed on a first fin of the plurality of fins, and a second gate structure is formed on a second fin of the plurality of fins such that the cut feature is disposed between the first gate structure and the second gate structure.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 14, 2024
    Inventors: Zhi-Chang Lin, Wei-Hao Wu, Jia-Ni Yu, Chih-Hao Wang, Kuo-Cheng Ching
  • Patent number: 11929287
    Abstract: The present disclosure describes a semiconductor structure with a dielectric liner. The semiconductor structure includes a substrate and a fin structure on the substrate. The fin structure includes a stacked fin structure, a fin bottom portion below the stacked fin structure, and an isolation layer between the stacked fin structure and the bottom fin portion. The semiconductor structure further includes a dielectric liner in contact with an end of the stacked fin structure and a spacer structure in contact with the dielectric liner.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhi-Chang Lin, Shih-Cheng Chen, Kuo-Cheng Chiang, Kuan-Ting Pan, Jung-Hung Chang, Lo-Heng Chang, Chien Ning Yao
  • Patent number: 11916122
    Abstract: A method for forming a gate all around transistor includes forming a plurality of semiconductor nanosheets. The method includes forming a cladding inner spacer between a source region of the transistor and a gate region of the transistor. The method includes forming sheet inner spacers between the semiconductor nanosheets in a separate deposition process from the cladding inner spacer.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhi-Chang Lin, Kuan-Ting Pan, Shih-Cheng Chen, Jung-Hung Chang, Lo-Heng Chang, Chien-Ning Yao, Kuo-Cheng Chiang
  • Patent number: 7976648
    Abstract: Cold worked nickel-titanium alloys that have linear pseudoelastic behavior without a phase transformation or onset of stress-induced martensite as applied to a medical device having a strut formed body deployed from a sheath. In one application, an embolic protection device that employs a linear pseudoelastic nitinol self-expanding strut assembly with a small profile delivery system for use with interventional procedures. The expandable strut assembly is covered with a filter element and both are compressed into a restraining sheath for delivery to a deployment site downstream and distal to an interventional procedure. Once at the desired site, the restraining sheath is retracted to deploy the embolic protection device, which captures flowing emboli generated during the interventional procedure. Linear pseudoelastic nitinol is used in the medical device as distinct from non-linear pseudoelastic (i.e., superelastic) nitinol.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: July 12, 2011
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: John Francis Boylan, Zhi Cheng Lin
  • Patent number: 7938843
    Abstract: Cold worked nickel-titanium alloys that have linear pseudoelastic behavior without a phase transformation or onset of stress-induced martensite as applied to a medical device having a strut formed body deployed from a sheath is disclosed. In one application, an embolic protection device that employs a linear pseudoelastic nitinol self-expanding strut assembly with a small profile delivery system for use with interventional procedures is disclosed. The expandable strut assembly is covered with a filter element and both are compressed into a restraining sheath for delivery to a deployment site downstream and distal to an interventional procedure. Once at the desired site, the restraining sheath is retracted to deploy the embolic protection device, which captures flowing emboli generated during the interventional procedure. Linear pseudoelastic nitinol is used in the medical device as distinct from non-linear pseudoelastic (i.e., superelastic) nitinol.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: May 10, 2011
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: John F. Boylan, Keif Fitzgerald, Zhi Cheng Lin
  • Publication number: 20100125329
    Abstract: An implantable medical device, such as a stent, having linear pseudoelastic behavior and a polymeric drug coating is disclosed. A method of producing an implantable medical device having linear pseudoelastic behavior and a polymeric drug coating is also disclosed.
    Type: Application
    Filed: December 19, 2002
    Publication date: May 20, 2010
    Inventors: Zhi Cheng Lin, Winnette McIntosh
  • Publication number: 20090221058
    Abstract: The present invention discloses a potentiometric biosensor for detecting lactate in food, and the forming method thereof. The disclosed biosensor comprises a substrate, and conducting layer on the substrate, an oxide layer on the conducting layer, and an enzyme layer on the oxide layer, wherein the enzyme layer comprises Lactate dehydrogenase (LDH). The detection signal is transmitted for further processing through a wire connected to the conducting layer, or a window formed on the surface of conducting layer.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Nien-Hsuan Chou, Zhi-Cheng Lin
  • Publication number: 20030199920
    Abstract: Cold worked nickel-titanium alloys that have linear pseudoelastic behavior without a phase transformation or onset of stress-induced martensite as applied to a medical device having a strut formed body deployed from a sheath is disclosed. In one application, an embolic protection device that employs a linear pseudoelastic nitinol self-expanding strut assembly with a small profile delivery system for use with interventional procedures is disclosed. The expandable strut assembly is covered with a filter element and both are compressed into a restraining sheath for delivery to a deployment site downstream and distal to an interventional procedure. Once at the desired site, the restraining sheath is retracted to deploy the embolic protection device, which captures flowing emboli generated during the interventional procedure. Linear pseudoelastic nitinol is used in the medical device as distinct from non-linear pseudoelastic (i.e., superelastic) nitinol.
    Type: Application
    Filed: June 9, 2003
    Publication date: October 23, 2003
    Inventors: John F. Boylan, Keif Fitzgerald, Zhi Cheng Lin
  • Patent number: 6602272
    Abstract: Cold worked nickel-titanium alloys that have linear pseudoelastic behavior without a phase transformation or onset of stress-induced martensite as applied to a medical device having a strut formed body deployed from a sheath is disclosed. In one application, an embolic protection device that employs a linear pseudoelastic nitinol self-expanding strut assembly with a small profile delivery system for use with interventional procedures is disclosed. The expandable strut assembly is covered with a filter element and both are compressed into a restraining sheath for delivery to a deployment site downstream and distal to an interventional procedure. Once at the desired site, the restraining sheath is retracted to deploy the embolic protection device, which captures flowing emboli generated during the interventional procedure. Linear pseudoelastic nitinol is used in the medical device as distinct from non-linear pseudoelastic (i.e., superelastic) nitinol.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: August 5, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: John F. Boylan, Keif Fitzgerald, Zhi Cheng Lin
  • Patent number: 6474211
    Abstract: A scroll saw includes a machine base and a table mounted pivotally on the machine base for placement of a workpiece to be sawn. The table is rotatable about a horizontal axis that extends in a longitudinal direction of the machine base. A C-shaped blade-holding arm is fixed on the machine base, and has upper and lower arm portions that extend in the longitudinal direction of the machine base. A saw blade is held between front ends of the upper and lower arm portions of the blade-holding arm, and extends perpendicularly through the table. A saw-blade driving device includes a motor which is disposed within the machine base, and which is provided with a motor shaft. The motor shaft extends in the longitudinal direction of the machine base. A linkage interconnects the motor shaft and the saw blade so as to reciprocate the saw blade relative to the blade-holding arm.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: November 5, 2002
    Assignee: P & F Brother Industrial Corporation
    Inventor: Zhi-Cheng Lin
  • Publication number: 20020052627
    Abstract: Cold worked nickel-titanium alloys that have linear pseudoelastic behavior without a phase transformation or onset of stress-induced martensite as applied to a medical device having a strut formed body deployed from a sheath is disclosed. In one application, an embolic protection device that employs a linear pseudoelastic nitinol self-expanding strut assembly with a small profile delivery system for use with interventional procedures is disclosed. The expandable strut assembly is covered with a filter element and both are compressed into a restraining sheath for delivery to a deployment site downstream and distal to an interventional procedure. Once at the desired site, the restraining sheath is retracted to deploy the embolic protection device, which captures flowing emboli generated during the interventional procedure. Linear pseudoelastic nitinol is used in the medical device as distinct from non-linear pseudoelastic (i.e., superelastic) nitinol.
    Type: Application
    Filed: June 29, 2001
    Publication date: May 2, 2002
    Inventors: John F. Boylan, Keif Fitzgerald, Zhi Cheng Lin