Patents by Inventor Zhide WU

Zhide WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975079
    Abstract: The present disclosure provides a truncated Evans Blue modified fibroblast activation protein inhibitor compound. The compound is formed by connecting truncated Evans Blue, a fibroblast activation protein inhibitor and a nuclide chelating group by means of connecting groups L1, L2, L3, L4 and X. The compound has the following structure shown in Formula (I), where R1 is a fibroblast activation protein inhibitor; L1 is lysine, glutamic acid, or a derivative structure thereof; L2 is —(CH2)n—, n is an integer from 0 to 30, and each —CH2— may be individually substituted or unsubstituted with —O—, —NH—, —(CO)—, —NH(CO)—, or —(CO)—NH—; L3 is —(CH2)m—, m is an integer from 0 to 30, and each —CH2— may be individually substituted or unsubstituted with —O— or —(CO)—; L4 is —(CH2)p—, p is an integer from 0 to 30, and each —CH2— may be individually substituted or unsubstituted with —O—, —NH—, —(CO)—, —NH(CO)—, or —(CO)—NH—; X is selected from N, C, O, S, or and R2 is a nuclide chelating group.
    Type: Grant
    Filed: July 11, 2021
    Date of Patent: May 7, 2024
    Assignee: YANTAI LANNACHENG BIOTECHNOLOGY CO., LTD.
    Inventors: Xiaoyuan Chen, Pengfei Xu, Zhide Guo, Xiaoming Wu, Qingbao Yang, Tian He
  • Publication number: 20240131205
    Abstract: The present disclosure relates to the fields of nuclear medicine and molecular imaging, and specifically relates to a dual-targeting compound and a preparation method and application thereof. The dual-targeting compound has the following structure shown in Formula (I). The present disclosure also provides a dual-targeting compound capable of being labeled with a radionuclide, and the compound has the following structure shown in Formula (I-1) or Formula (I-2). The dual-targeting compound of the present disclosure has high affinity for an FAP target and an integrin ?v?3 target, can realize synergistic targeting of the FAP target and the integrin ?v?3 target in tumors, and has high uptake in tumors and long retention time in tumors.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 25, 2024
    Inventors: Xiaoyuan CHEN, Pengfei XU, Xiaoming WU, Zhide GUO, Qingbao YANG, Xuejun WEN
  • Patent number: 11952368
    Abstract: Provided are a fibroblast activation protein inhibitor (FAPI) dimer compound, an FAPI dimer-based positron emission tomography (PET) imaging agent for tumor diagnosis, and a preparation method and use thereof. An amphiphilic polyethylene glycol (PEG) chain and a dimerized structure of FAPI in the FAPI dimer compound with a structure shown in formula I can improve the in vivo kinetic properties of the compound and prolong a residence time of the compound in a tumor, thereby improving the uptake and imaging effects in the tumor. The accurate tumor diagnosis can be achieved by labeling the FAPI dimer compound with a diagnostic nuclide (68Ga), which has promising application prospects in PET imaging for diagnosis and in the preparation of a therapeutic nuclide (such as 177Lu or 90Y)-labeled drug for treating a FAP-?-expressing tumor.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Xiamen University
    Inventors: Haojun Chen, Liang Zhao, Qin Lin, Kaili Fu, Yizhen Pang, Zhide Guo, Jianyang Fang, Long Sun, Hua Wu
  • Publication number: 20240068991
    Abstract: A clamping triaxial seepage and acoustic coupling rock tensile testing machine includes a sample and a scaffold-type tensile testing device. The scaffold-type tensile testing device has an upper chuck and a lower chuck. The upper chuck has an acoustic transmitting channel, one end of which communicating with the outside, and the other end of which having an acoustic transmitting probe. The lower chuck has an acoustic receiving channel, one end of which communicating with the outside, and the other end having acoustic receiving probe. An upper end face of the sample has with a seepage outflow hole while the upper chuck has a seepage outflow channel connected with the seepage outflow hole. A lower end face of the sample has a seepage inflow hole while the lower chuck has a seepage entry channel is connected with the seepage inflow hole.
    Type: Application
    Filed: August 25, 2023
    Publication date: February 29, 2024
    Inventors: Mancang LIU, Xiaosong QIU, Jianfeng LIU, Yunhe SU, Zhide WU, Lu WANG, Shujuan XU, Xin LAI, Jianxiong YANG, Huining XU, Jianliang PEI, Jinbing WEI
  • Patent number: 11137508
    Abstract: The present invention describes a mechanical coupling microseismic monitoring system, which includes at least one microseismic sensor, push rods that are arranged at both ends of the microseismic sensor through a first connection mechanism to send the microseismic sensor into the monitoring hole, introduction mechanisms that are mounted on the push rods for introducing the microseismic sensor into the monitoring hole, and one microseismic monitoring computer that receives signals from the microseismic sensor; the microseismic sensor is a recoverable microseismic sensor; the first connection mechanism is a connection mechanism that can make the push rod swing relative to the microseismic sensor; the introduction mechanism is a three-roller introduction mechanism. The present invention meets the requirement of microseismic monitoring for different parts of deep monitoring hole using multiple microseismic sensors.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 5, 2021
    Assignee: RESEARCH INSTITUTE OF PETROLEUM EXPLORATION & DEVELOPMENT, PETROCHINA COMPANY LIMITED
    Inventors: Dewen Zheng, Zhide Wu, Guosheng Ding, Huayin Zhu, Jianfeng Liu, Lina Ran, Tong Lin
  • Patent number: 10976456
    Abstract: The present invention discloses an acoustic sensor for rock crack detection including an acoustic emission probe, a probe installation mechanism and a transmission mechanism which transmits a combination of the probe installation mechanism and the acoustic emission probe to a setting position inside a borehole in the monitored rock mass. The acoustic emission probe installation mechanism essentially includes a sleeve component, a guide component, an end cap and springs. The guide component is in pluggable connection with the sleeve component or the end cap. The assembled probe installation mechanism locks the acoustic emission probe in a probe sleeve of the sleeve component. The springs inside the elastic sleeve of the sleeve component are in a compressed state.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: April 13, 2021
    Assignee: RESEARCH INSTITUTE OF PETROLEUM EXPLORATION & DEVELOPMENT, PETROCHINA COMPANY LIMITED
    Inventors: Tongshan Wang, Tong Lin, Dewen Zheng, Zhide Wu, Jianfeng Liu
  • Patent number: 10935678
    Abstract: The invention discloses a monitoring system for deformations and destructions of a gas storage, including an acoustic emission sensor installed in a borehole of a monitored rock mass and a ground workstation. The acoustic emission sensor includes an acoustic emission probe and a probe installation mechanism for installing the acoustic emission probe and a transmission mechanism for transmitting the probe installation mechanism. The probe installation mechanism includes a shell, a probe sleeve and two sets of pistons hydro-cylinder components. The present invention realizes the control of the moving direction of the shell and the probe sleeve by the piston hydro-cylinder component and the hydraulic pump, thus solving the problem of effective installation and coupling of the acoustic emission probe, ensuring the effective coupling between the acoustic emission probe and the wall of the borehole.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: March 2, 2021
    Assignee: RESEARCH INSTITUTE OF PETROLEUM EXPLORATION & DEVELOPMENT, PETROCHINA COMPANY LIMITED
    Inventors: Dewen Zheng, Zhide Wu, Guosheng Ding, Huayin Zhu, Jianfeng Liu, Lina Ran, Tong Lin
  • Patent number: 10823653
    Abstract: A rock damage mechanics test system for high temperature and high pressure deep earth environment includes an MTS triaxial test machine and a control system connected therewith. The MTS triaxial test machine is composed of a rigid frame, a high temperature and high pressure triaxial chamber, and a triaxial chamber base. The control system includes a workstation for data processing and a manual controller for controlling the workstation and a master controller. The system improves mounting and dismounting efficiency of an MTS triaxial force sensor, enhances reliability of lifting and solves the problem of aligning holes during the force sensor mounting process, thus improving the mounting efficiency.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 3, 2020
    Assignee: SICHUAN UNIVERSITY
    Inventors: Jianfeng Liu, Heping Xie, Jianliang Pei, Wenxi Fu, Jianhui Deng, Zhide Wu, Huining Xu, Lu Wang, Fei Wu
  • Patent number: 10801934
    Abstract: The present invention discloses a rock mechanics experiment system for simulating deep-underground environment, including a triaxial chamber consisting of a chamber cavity and a test pedestal, a stress field building module, a high pressure seepage field building module, a high temperature field building and a seepage medium permeating control measurement module arranged in the triaxial chamber, a lifting module used for installing and disassembling of the chamber cavity, and computer module used for controlling the operation of system and calculating and outputting the test data. The lifting module includes a door-shaped support frame, a cylinder piston device vertically mounted on the door-shaped support frame beam, a coupling device and a safety suspension device. The coupling device includes an oil hydraulic rod with the upper end fixedly coupled with the piston, a safety disk fixedly coupled with the lower end of the hydraulic rod, and two symmetrically disposed coupling assemblies.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: October 13, 2020
    Assignees: SICHUAN UNIVERSITY, RESEARCH INSTITUTE OF PETROLEUM EXPLORATION & DEVELOPMENT, PETROCHINA COMPANY LIMITED
    Inventors: Jianfeng Liu, Guosheng Ding, Zhide Wu, Qiqi Wanyan, Lina Ran, Jianliang Pei, Lu Wang, Huining Xu, Chunping Wang, Yilin Liao, Qiangxing Zhang, Xiaozhang Lei, Wenxi Fu, Min Zhang
  • Publication number: 20190331569
    Abstract: A rock damage mechanics test system for high temperature and high pressure deep earth environment includes an MTS triaxial test machine and a control system connected therewith. The MTS triaxial test machine is composed of a rigid frame, a high temperature and high pressure triaxial chamber, and a triaxial chamber base. The control system includes a workstation for data processing and a manual controller for controlling the workstation and a master controller. The system improves mounting and dismounting efficiency of an MTS triaxial force sensor, enhances reliability of lifting and solves the problem of aligning holes during the force sensor mounting process, thus improving the mounting efficiency.
    Type: Application
    Filed: April 29, 2019
    Publication date: October 31, 2019
    Applicant: Sichuan University
    Inventors: Jianfeng LIU, Heping XIE, Jianliang PEI, Wenxi FU, Jianhui DENG, Zhide WU, Huining XU, Lu WANG, Fei WU
  • Publication number: 20190011581
    Abstract: The present invention describes a mechanical coupling microseismic monitoring system, which includes at least one microseismic sensor, push rods that are arranged at both ends of the microseismic sensor through a first connection mechanism to send the microseismic sensor into the monitoring hole, introduction mechanisms that are mounted on the push rods for introducing the microseismic sensor into the monitoring hole, and one microseismic monitoring computer that receives signals from the microseismic sensor; the microseismic sensor is a recoverable microseismic sensor; the first connection mechanism is a connection mechanism that can make the push rod swing relative to the microseismic sensor; the introduction mechanism is a three-roller introduction mechanism. The present invention meets the requirement of microseismic monitoring for different parts of deep monitoring hole using multiple microseismic sensors.
    Type: Application
    Filed: August 14, 2018
    Publication date: January 10, 2019
    Applicant: Research Institute of Petroleum Exploration & Development, PetroChina Company Limited
    Inventors: Dewen ZHENG, Zhide WU, Guosheng DING, Huayin ZHU, Jianfeng LIU, Lina RAN, Tong LIN
  • Publication number: 20180372892
    Abstract: The invention discloses a monitoring system for deformations and destructions of a gas storage, including an acoustic emission sensor installed in a borehole of a monitored rock mass and a ground workstation. The acoustic emission sensor includes an acoustic emission probe and a probe installation mechanism for installing the acoustic emission probe and a transmission mechanism for transmitting the probe installation mechanism. The probe installation mechanism includes a shell, a probe sleeve and two sets of pistons hydro-cylinder components. The present invention realizes the control of the moving direction of the shell and the probe sleeve by the piston hydro-cylinder component and the hydraulic pump, thus solving the problem of effective installation and coupling of the acoustic emission probe, ensuring the effective coupling between the acoustic emission probe and the wall of the borehole.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 27, 2018
    Applicant: Research Institute of Petroleum Exploration & Development, PetroChina Company Limited
    Inventors: Dewen ZHENG, Zhide WU, Guosheng DING, Huayin ZHU, Jianfeng LIU, Lina RAN, Tong LIN
  • Publication number: 20180372894
    Abstract: The present invention discloses an acoustic sensor for rock crack detection including an acoustic emission probe, a probe installation mechanism and a transmission mechanism which transmits a combination of the probe installation mechanism and the acoustic emission probe to a setting position inside a borehole in the monitored rock mass. The acoustic emission probe installation mechanism essentially includes a sleeve component, a guide component, an end cap and springs. The guide component is in pluggable connection with the sleeve component or the end cap. The assembled probe installation mechanism locks the acoustic emission probe in a probe sleeve of the sleeve component. The springs inside the elastic sleeve of the sleeve component are in a compressed state.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 27, 2018
    Applicant: Research Institute of Petroleum Exploration & Development, PetroChina Company Limited
    Inventors: Tongshan WANG, Tong LIN, Dewen ZHENG, Zhide WU, Jianfeng LIU