Patents by Inventor Zhiguo Meng

Zhiguo Meng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9299863
    Abstract: A solar cell photovoltaic device using ultrathin films of polycrystalline silicon and deep uneven surface structures is disclosed. According to one embodiment, the uneven structures include one or more pits having a depth of at least 10 microns. According to another embodiment, the uneven structures include one or more cones or columns having a height or at least 10 microns. Because the unevenness of the structures, the photovoltaic device is able to use a very thin layer of polycrystalline silicon to effectively trap and absorb light.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: March 29, 2016
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Zhiguo Meng, Man Wong
  • Patent number: 8754416
    Abstract: The present invention provides a method of an active-matrix thin film transistor array, comprising of two levels of metallic interconnections formed from one layer of metallic conductor; and thin-film transistors with source, drain and gate electrodes either fully or partially replaced with metal, and wherein the pixel electrodes are polycrystalline silicon.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: June 17, 2014
    Assignee: The Hong Hong University of Science and Technology
    Inventors: Hoi-Sing Kwok, Man Wong, Zhiguo Meng, Dongli Zhang, Jiaxin Sun, Xiuling Zhu
  • Patent number: 8426865
    Abstract: A low temperature polycrystalline silicon device and techniques to manufacture thereof with excellent performance. Employing doped poly-Si lines which we called a bridged-grain structure (BG), the intrinsic or lightly doped channel is separated into multiple regions. A single gate covering the entire active channel including the doped lines is still used to control the current flow. Using this BG poly-Si as an active layer and making sure the TFT is designed so that the current flows perpendicularly to the parallel lines of grains, grain boundary effects can be reduced.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: April 23, 2013
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Shuyun Zhao
  • Patent number: 8338237
    Abstract: The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer of thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase ; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: December 25, 2012
    Assignee: Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Shuyun Zhao, Chunya Wu
  • Patent number: 8339026
    Abstract: Metal induced polycrystallized silicon is used as the anode in a light emitting device, such as an OLED or AMOLED. The polycrystallized silicon is sufficiently non-absorptive, transparent and made sufficiently conductive for this purpose. A thin film transistor can be formed onto the polycrystallized silicon anode, with the silicon anode acting as the drain of the thin film transistor, thereby simplifying production.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: December 25, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Jiaxin Sun, Xiuling Zhu
  • Patent number: 8263968
    Abstract: An organic light-emitting diode display which can display independent images on both sides is described. This display can be driven with passive matrix or active matrix schemes. The invention combines a unique stacked organic diode structure and special driving schemes involving time-sequential reversed fields.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 11, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Hoi-Sing Kwok, Man Wong, Jiaxin Sun, Zhiguo Meng, Xiuling Zhu
  • Patent number: 8088676
    Abstract: Crystallization-inducing metal elements are introduced onto an amorphous silicon thin film. A first, low-temperature, heat-treatment induces nucleation of metal-induced crystallization (MIC), resulting in the formation of small polycrystalline silicon “islands”. A metal-gettering layer is formed on the resulting partially crystallized thin film. A second, low-temperature, heat-treatment completes the MIC process, whilst gettering metal elements from the partially crystallized thin film. The process results in the desired polycrystalline silicon thin film.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: January 3, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Man Wong, Hoi-Sing Kwok, Zhiguo Meng, Dongli Zhang, Xuejie Shi
  • Patent number: 8013957
    Abstract: The construction of electrodes for liquid-crystal displays using larger grain lower absorption (LGLA) poly-Si showing an absorptivity below 20% in the visible light region is described. Integration in the manufacturing of substrates for active-matrix LCDs is shown. Source, drain and channel region (108b, 108c, 108d) of the TFTs as well as the pixel-electrode (108e) are formed conjointly in a single poly-Si layer.
    Type: Grant
    Filed: May 21, 2005
    Date of Patent: September 6, 2011
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Zhiguo Meng, Man Wong, Hoi Sing Kwok
  • Publication number: 20110159610
    Abstract: Metal induced polycrystallized silicon is used as the anode in a light emitting device, such as an OLED or AMOLED. The polycrystallized silicon is sufficiently non-absorptive, transparent and made sufficiently conductive for this purpose. A thin film transistor can be formed onto the polycrystallized silicon anode, with the silicon anode acting as the drain of the thin film transistor, thereby simplifying production.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Jiaxin Sun, Xiuling Zhu
  • Patent number: 7923911
    Abstract: Metal induced polycrystallized silicon is used as the anode in a light emitting device, such as an OLED or AMOLED. The polycrystallized silicon is sufficiently non-absorptive, transparent and made sufficiently conductive for this purpose. A thin film transistor can be formed onto the polycrystallized silicon anode, with the silicon anode acting as the drain of the thin film transistor, thereby simplifying production.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 12, 2011
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Jiaxin Sun, Xiuling Zhu
  • Publication number: 20110012124
    Abstract: The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer of thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase ; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 20, 2011
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Shuyun Zhao, Chunya Wu
  • Patent number: 7790580
    Abstract: The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer of thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: September 7, 2010
    Assignee: Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Shuyun Zhao, Chunya Wu
  • Publication number: 20100171546
    Abstract: A low temperature polycrystalline silicon device and techniques to manufacture thereof with excellent performance. Employing doped poly-Si lines which we called a bridged-grain structure (BG), the intrinsic or lightly doped channel is separated into multiple regions. A single gate covering the entire active channel including the doped lines is still used to control the current flow. Using this BG poly-Si as an active layer and making sure the TFT is designed so that the current flows perpendicularly to the parallel lines of grains, grain boundary effects can be reduced. Reliability, uniformity and the electrical performance of the BG poly-Si TFT are significantly improved compared with the conventional low temperature poly-Si TFT.
    Type: Application
    Filed: February 4, 2008
    Publication date: July 8, 2010
    Applicant: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Shuyun Zhao
  • Publication number: 20100071760
    Abstract: A solar cell photovoltaic device using ultrathin films of polycrystalline silicon and deep uneven surface structures is disclosed. According to one embodiment, the uneven structures include one or more pits having a depth of at least 10 microns. According to another embodiment, the uneven structures include one or more cones or columns having a height or at least 10 microns. Because the unevenness of the structures, the photovoltaic device is able to use a very thin layer of polycrystalline silicon to effectively trap and absorb light.
    Type: Application
    Filed: May 7, 2009
    Publication date: March 25, 2010
    Applicant: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing KWOK, Zhiguo MENG, Man WONG
  • Publication number: 20090134790
    Abstract: Metal induced polycrystallized silicon is used as the anode in a light emitting device, such as an OLED or AMOLED. The polycrystallized silicon is sufficiently non-absorptive, transparent and made sufficiently conductive for this purpose. A thin film transistor can be formed onto the polycrystallized silicon anode, with the silicon anode acting as the drain of the thin film transistor, thereby simplifying production.
    Type: Application
    Filed: December 19, 2008
    Publication date: May 28, 2009
    Applicant: The Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Jiaxin Sun, Xiuling Zhu
  • Publication number: 20080204620
    Abstract: The construction of electrodes for liquid-crystal displays using larger grain lower absorption (LGLA) poly-Si showing an absorptivity below 20% in the visible light region is described. Integration in the manufacturing of substrates for active-matrix LCDs is shown. Source, drain and channel region (108b, 108c, 108d) of the TFTs as well as the pixel-electrode (108e) are formed conjointly in a single poly-Si layer.
    Type: Application
    Filed: May 21, 2005
    Publication date: August 28, 2008
    Applicant: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Zhiguo Meng, Man Wong, Hoi Sing Kwok
  • Publication number: 20080203394
    Abstract: The present invention provides a method of an active-matrix thin film transistor array, comprising of two levels of metallic interconnections formed from one layer of metallic conductor; and thin-film transistors with source, drain and gate electrodes either fully or partially replaced with metal, and wherein the pixel electrodes are polycrystalline silicon.
    Type: Application
    Filed: November 24, 2006
    Publication date: August 28, 2008
    Inventors: Hoi-Sing Kwok, Man Wong, Zhiguo Meng, Dongli Zhang, Jiaxin Sun, Xiuling Zhu
  • Patent number: 7381600
    Abstract: The invention provides a method of forming polycrystalline silicon comprising the steps of: forming a layer of amorphous silicon, forming a layer of metal or metal-containing compound on the layer of amorphous silicon, annealing the layer of amorphous silicon and said layer of metal to form a polycrystalline silicon layer, and irradiating the polycrystalline silicon layer with two different harmonics of a pulsed laser. The pulsed laser is preferably a solid-state laser such as a Nd-Yag laser. One harmonic is chosen such that it is preferentially absorbed by defects in the polycrystalline silicon layer, the other harmonic is absorbed by the bulk polycrystalline silicon.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 3, 2008
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Man Wong, Hoi Sing Kwok, Zhiguo Meng
  • Publication number: 20070212855
    Abstract: The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer or thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 13, 2007
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Shuyun Zhao, Chunya Wu
  • Publication number: 20070114522
    Abstract: An organic light-emitting diode display which can display independent images on both sides is described. This display can be driven with passive matrix or active matrix schemes. The invention combines a unique stacked organic diode structure and special driving schemes involving time-sequential reversed fields.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 24, 2007
    Inventors: Hoi-Sing Kwok, Man Wong, Jiaxin Sun, Zhiguo Meng, Xiuling Zhu