Patents by Inventor Zhihe Chao

Zhihe Chao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885666
    Abstract: Accurate weighing and measurement of fine materials is provided by a linear compensation apparatus and a weighing system. The linear compensation apparatus has a weight loading mechanism (10) with a bearing plate (11), a drive apparatus (12), and a measuring weight (13). The drive apparatus is mounted onto the bearing plate, the measuring weight is connected to the drive apparatus, and, by hoisting or lowering the measuring weight with the drive apparatus, loads from the bearing plate are adjusted. The linear compensation apparatus and the weighing system greatly reduce device costs and labor costs in a batching process, save time and effort, have no risk of cross-contamination, and achieve automated production operation.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: January 30, 2024
    Assignees: Mettler-Toledo (Changzhou) Precision Instruments Co., Ltd, Mettler-Toledo (Changzhou) Measurement Technology Co., Ltd, Mettler-Toledo International Trading (Shanghai) Co., Ltd
    Inventors: Jinjie Cai, Xiang Li, Zhihe Chao, Chenggang Ding, Xiaomin Zhang, Chunhui Li
  • Patent number: 11879770
    Abstract: A weighing method has an automatic micro-calibration function. In the method, an automatic adjustment is performed by a self-calibration weighing module. When the result of the adjustment does not meet a requirement, an automatic calibration is performed by the self-calibration weighing module, followed by weighing fine formulation materials. In the weighing method, the self-calibration module is used to perform the automatic calibration function to weigh the fine formulation materials. This provides a high degree of automation, and greatly reduced cost in equipment and labor for a formulating process, saving on time and labor, and with no risk of cross-contamination.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: January 23, 2024
    Assignees: Mettler-Toledo (Changzhou) Precision Instruments Ltd, Mettler-Toledo (Changzhou) Measurement Technology Ltd., Mettler-Toledo International Trading (Shanghai) Co., Ltd
    Inventors: Zhengwei Ji, Chunhui Li, ZhiHe Chao
  • Publication number: 20220074787
    Abstract: Accurate weighing and measurement of fine materials is provided by a linear compensation apparatus and a weighing system. The linear compensation apparatus has a weight loading mechanism (10) with a bearing plate (11), a drive apparatus (12), and a measuring weight (13). The drive apparatus is mounted onto the bearing plate, the measuring weight is connected to the drive apparatus, and, by hoisting or lowering the measuring weight with the drive apparatus, loads from the bearing plate are adjusted. The linear compensation apparatus and the weighing system greatly reduce device costs and labor costs in a batching process, save time and effort, have no risk of cross-contamination, and achieve automated production operation.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 10, 2022
    Inventors: Jinjie Cai, Xiang Li, Zhihe Chao, Chenggang Ding, Xiaomin Zhang, Chunhui Li
  • Publication number: 20210293609
    Abstract: A weighing method has an automatic micro-calibration function. In the method, an automatic adjustment is performed by a self-calibration weighing module. When the result of the adjustment does not meet a requirement, an automatic calibration is performed by the self-calibration weighing module, followed by weighing fine formulation materials. In the weighing method, the self-calibration module is used to perform the automatic calibration function to weigh the fine formulation materials. This provides a high degree of automation, and greatly reduced cost in equipment and labor for a formulating process, saving on time and labor, and with no risk of cross-contamination.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 23, 2021
    Inventors: Zhengwei Ji, Chunhui Li, ZhiHe Chao
  • Patent number: 10768042
    Abstract: A weigh module (100) comprises a load cell (4), a supporting member (1) and a load transmitting arrangement (2). The supporting member (1) comprises a receiving hole (13) extending vertically and thoroughly. The load transmitting arrangement (2) comprises a connecting member (23), a bearing member (21) and a rolling ball (22). The connecting member (23) connects the load cell (4) to the supporting member (1). One end of the connecting member (23) is fixed to the load cell (4) and another end of the connecting member (23) extends into the receiving hole (13). The bearing member (21) is disposed in the receiving hole (13) and is fixed to the supporting member (1). The rolling ball (22) is disposed between the bearing member (21) and the connecting member (23), whereby the force applied on the supporting member (1) can be transferred to the load cell (4) via the bearing member (21), the rolling ball (22) and the connecting member (23).
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: September 8, 2020
    Assignees: Mettler-Toledo Precision Instrument Company Limited, Mettler-Toledo Measurement Technology Company Limited, Mettler-Toledo Weighing Equipment Company Limited
    Inventors: Ping Zhang, Zhihe Chao, Christian Gabis, Tom Leahy
  • Publication number: 20190049290
    Abstract: A weigh module (100) comprises a load cell (4), a supporting member (1) and a load transmitting arrangement (2). The supporting member (1) comprises a receiving hole (13) extending vertically and thoroughly. The load transmitting arrangement (2) comprises a connecting member (23), a bearing member (21) and a rolling ball (22). The connecting member (23) connects the load cell (4) to the supporting member (1). One end of the connecting member (23) is fixed to the load cell (4) and another end of the connecting member (23) extends into the receiving hole (13). The bearing member (21) is disposed in the receiving hole (13) and is fixed to the supporting member (1). The rolling ball (22) is disposed between the bearing member (21) and the connecting member (23), whereby the force applied on the supporting member (1) can be transferred to the load cell (4) via the bearing member (21), the rolling ball (22) and the connecting member (23).
    Type: Application
    Filed: January 24, 2017
    Publication date: February 14, 2019
    Inventors: Ping Zhang, Zhihe Chao, Christian Gabis, Tom Leahy