Patents by Inventor Zhihong Gao

Zhihong Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111956
    Abstract: Disclosed are a Nested Named Entity Recognition method based on part-of-speech awareness, system, device and storage medium therefor. The method uses a BiLSTM model to extract a feature of text word data in order to obtain a text word depth feature, and each text word of text to be recognized is initialized into a corresponding graph node, and a text heterogeneous graph of the text to be recognized is constructed according to a preset part-of-speech path, the text word data of the graph nodes is updated by an attention mechanism, and the features of all graph nodes of the text heterogeneous graph are extracted using the BiLSTM model, and a nested named entity recognition result is obtained after decoding and annotating. The present disclosure can recognize ordinary entities and nested entities accurately and effectively, and enhance the performance and advantages of the nested named entity recognition model.
    Type: Application
    Filed: November 28, 2023
    Publication date: April 4, 2024
    Inventors: Jing Qiu, Ling Zhou, Chengliang Gao, Rongrong Chen, Ximing Chen, Zhihong Tian, Lihua Yin, Hui Lu, Yanbin Sun, Junjun Chen, Dongyang Zheng, Fei Tang, Jiaxu Xing
  • Patent number: 9920646
    Abstract: Turbine and compressor casing/housing abradable component embodiments for turbine engines, have abradable surfaces with asymmetric forward and aft ridge surface area density. The forward ridges have greater surface area density than the aft ridges to compensate for greater ridge erosion in the forward zone during engine operation and reduce blade tip wear in the aft zone. Some abradable component embodiments increase forward zone ridge surface area density by incorporating wider ridges than those in the aft zone.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 20, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Erik Johnson, Eric Schroeder, Nicholas F. Martin, Jr.
  • Publication number: 20170218787
    Abstract: Turbine and compressor casing/housing abradable component embodiments for turbine engines, have abradable surfaces with asymmetric forward and aft ridge surface area density. The forward ridges have greater surface area density than the aft ridges to compensate for greater ridge erosion in the forward zone during engine operation and reduce blade tip wear in the aft zone. Some abradable component embodiments increase forward zone ridge surface area density by incorporating wider ridges than those in the aft zone.
    Type: Application
    Filed: February 18, 2016
    Publication date: August 3, 2017
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Erik Johnson, Eric Schroeder, Nicholas F. Martin, Jr.
  • Patent number: 9249680
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting asymmetric non-parallel walls or trapezoidal cross section ridges that reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. In some embodiments at least one angularly oriented first groove formed in the ridge plateau is adapted for angular orientation upstream a turbine blade rotation direction to resist blade tip airflow leakage and the ridges are separated by second grooves that are skewed relative to the respective ridge plateaus and the substrate that are also adapted for orientation upstream the turbine blade rotation direction to resist blade tip airflow leakage.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 2, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Gm Salam Azad, Zhihong Gao, Neil Hitchman, Nicholas F. Martin, Jr., David G. Sansom, Ramesh Subramanian
  • Publication number: 20150240652
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting asymmetric non-parallel walls or trapezoidal cross section ridges that reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. In some embodiments at least one angularly oriented first groove formed in the ridge plateau is adapted for angular orientation upstream a turbine blade rotation direction to resist blade tip airflow leakage and the ridges are separated by second grooves that are skewed relative to the respective ridge plateaus and the substrate that are also adapted for orientation upstream the turbine blade rotation direction to resist blade tip airflow leakage.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Gm Salam Azad, Zhihong Gao, Neil Hitchman, Nicholas F. Martin, JR., David G. Sansom, Ramesh Subramanian
  • Patent number: 9117033
    Abstract: A method, device, and system for packet transmission on the PCIE bus according to the embodiments of the present invention, a SCSI protocol packet is encapsulated to obtain an encapsulated SCSI protocol packet, and the encapsulated SCSI protocol packet is carried in a PCIE data packet, and then the PCIE data packet carrying the encapsulated SCSI protocol packet is transmitted to the receiver device through the PCIE bus. Thereby, transmission of SCSI protocol packets is implemented on the PCIE bus, and any devices interconnected through the PCIE bus can operate each other through SCSI protocol packets with a high data transmission bandwidth and high processing speed, without requiring a specific physical device or adapter to perform protocol conversion.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 25, 2015
    Assignee: Huawei Digital Technologies (Cheng Du) Co. Limited.
    Inventors: Zhihong Gao, Ke Li
  • Patent number: 8939707
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting rows of stepped first ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. Each stepped first ridge has a first portion proximal the substrate surface with a pair of first opposed lateral walls terminating in a plateau, and a second portion terminating in a ridge tip. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, which at and below first portion height, optimizes engine airflow characteristics, while the upper zone, between the plateau and the second portion ridge is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 27, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Neil Hitchman, David G. Sansom, Barrry L. Allmon
  • Patent number: 8939706
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting rows of ridges in planform patterns, establishing upper and lower wear zones. The lower wear zone reduces, redirects and/or blocks blade tip downstream airflow leakage, while the upper wear zone is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone. An elongated first ridge in the lower wear zone terminates in a continuous surface plateau. A plurality of second ridges or nibs, separated by grooves, project from the plateau, forming the upper wear zone. Each of the second ridges has a planform cross section smaller than the plateau planform cross section and a height smaller than the first ridge height. Some embodiments of the second ridges have spacing, planform cross sections, heights and separating groove dimensions selected for shearing when contacted by turbine blade tips.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 27, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Neil Hitchman, David G. Sansom, Barrry L. Allmon, Jonathan E. Shipper, Jr., Cora Schillig, Gary B. Merrill, Dimitrios Zois, Ramesh Subramanian
  • Patent number: 8511968
    Abstract: A turbine vane for a gas turbine engine with an internal cooling system formed from a serpentine cooling channel with one or more flow blocking ribs is disclosed. The serpentine cooling channels may be configured to receive cooling fluids from internal cooling fluids supply channels. The serpentine cooling channels may include flow blocking ribs to form concurrent flow channels to reduce the cross-sectional area within the midchord region of the airfoil to maintain the internal through flow channel Mach number. The flow blocking ribs may include slots therein and may have any appropriate configuration. In at least one embodiment, the flow blocking ribs may be have a nonuniform taper or a uniformed taper.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: August 20, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: George Liang, Nan Jiang, Zhihong Gao
  • Publication number: 20130064680
    Abstract: A vane assembly for a gas turbine engine including an endwall and an airfoil extending from the endwall. An inner rail extends radially inwardly of the endwall, and an overhang portion extends axially from a location of the inner rail to a downstream edge. A recess cavity is defined in the overhang portion between the inner rail and the downstream edge. The recess cavity extends radially into the overhang portion and defines a cavity surface. A plurality of grooves extend radially into the cavity surface and have an elongated dimension extending in a direction from the inner rail toward the downstream edge. A plurality of cooling passages extend axially through the overhang portion, and are located between the grooves.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Inventors: GEORGE LIANG, Zhihong Gao, Brian J. Wessell, Joseph B. Gilliam
  • Patent number: 8388304
    Abstract: A cooling system for a turbine airfoil of a turbine engine having a trailing edge cooling region formed from endwall cooling channels having a higher density of cooling channels than other areas in order to cool the material forming the intersection between the trailing edge of the airfoil and the endwall to prevent premature cracking. The increased density of cooling channels in the endwall at the trailing edge forms a heat sink that draws heat from the airfoil, thereby lowering the temperature of the airfoil and increasing the useful life of the airfoil.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: March 5, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: George Liang, Zhihong Gao, Brian J. Wessell, Joseph B. Gilliam
  • Patent number: 8376705
    Abstract: A vane assembly for a gas turbine engine including an endwall and an airfoil extending from the endwall. An inner rail extends radially inwardly of the endwall, and an overhang portion extends axially from a location of the inner rail to a downstream edge. A recess cavity is defined in the overhang portion between the inner rail and the downstream edge. The recess cavity extends radially into the overhang portion and defines a cavity surface. A plurality of grooves extend radially into the cavity surface and have an elongated dimension extending in a direction from the inner rail toward the downstream edge. A plurality of cooling passages extend axially through the overhang portion, and are located between the grooves.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: February 19, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: George Liang, Zhihong Gao, Brian J. Wessell, Joseph B. Gilliam
  • Patent number: 8328518
    Abstract: A turbine vane for a gas turbine engine having an internal cooling system formed from at least one serpentine cooling channel with enhanced cooling elements. The serpentine cooling channel may include a first turn manifold with purge air discharge orifices inline with a first pass of the serpentine cooling channel. Cooling fluids may be used to cooling the leading edge of the vane and passed through the purge air discharge orifices to purge the rim cavity proximate to the endwall. The first turn manifold may also include a plurality of trip strips. The trips strips may be positioned on the suction and pressure sidewalls and may be offset from trip strips on the opposing sidewall. The cooling system may also include an aft purge rim orifice.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: December 11, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: George Liang, Zhihong Gao
  • Publication number: 20120282107
    Abstract: A cooling system for a turbine airfoil of a turbine engine having a trailing edge cooling region formed from endwall cooling channels having a higher density of cooling channels than other areas in order to cool the material forming the intersection between the trailing edge of the airfoil and the endwall to prevent premature cracking. The increased density of cooling channels in the endwall at the trailing edge forms a heat sink that draws heat from the airfoil, thereby lowering the temperature of the airfoil and increasing the useful life of the airfoil.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Inventors: George Liang, Zhihong Gao, Brian J. Wessell, Joseph B. Gilliam
  • Publication number: 20120177479
    Abstract: A component in a gas turbine engine includes an airfoil and a shroud. The shroud has an outer surface supporting an end of the airfoil and defines a portion of an annular gas path. The shroud includes axial edges extending between upstream and downstream edges thereof. Each of the axial edges includes a seal slot that receives a seal member extending between the shroud and an adjacent shroud. A cooling air channel extends between the upstream and downstream edges of the shroud. A cooling air supply passage extends from a cooling air chamber at an inner surface of the shroud to the cooling air channel. At least one cooling air exit passage extends from the cooling air channel to one of the axial edges. The cooling air channel is located radially between the outer surface of the shroud and the seal slot.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 12, 2012
    Inventors: Gm Salam Azad, Ching-Pang Lee, Zhihong Gao
  • Patent number: 7975980
    Abstract: An adjustable water valve of time-controlled type consists of an inner shell and a time-controlled apparatus. The time-controlled apparatus is disposed inside the inner shell and includes an elastomer and a push rod. The elastomer is disposed between a support lid and the push rod. When the push rod is pushed into the inner shell, the water valve is opened, so the user can wash with the water ejected. After certain time, the water pressures are balanced and the elastomer which has been compressed will push the push rod back to its initial position to close the valve.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: July 12, 2011
    Assignee: Highplus International Co., Ltd.
    Inventors: Youyue Gao, Zhihong Gao
  • Publication number: 20110038735
    Abstract: A turbine vane for a gas turbine engine with an internal cooling system formed from a serpentine cooling channel with one or more flow blocking ribs is disclosed. The serpentine cooling channels may be configured to receive cooling fluids from internal cooling fluids supply channels. The serpentine cooling channels may include flow blocking ribs to form concurrent flow channels to reduce the cross-sectional area within the midchord region of the airfoil to maintain the internal through flow channel Mach number. The flow blocking ribs may include slots therein and may have any appropriate configuration. In at least one embodiment, the flow blocking ribs may be have a nonuniform taper or a uniformed taper.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Inventors: George Liang, Nan Jiang, Zhihong Gao
  • Publication number: 20110038709
    Abstract: A turbine vane for a gas turbine engine having an internal cooling system formed from at least one serpentine cooling channel with enhanced cooling elements. The serpentine cooling channel may include a first turn manifold with purge air discharge orifices inline with a first pass of the serpentine cooling channel. Cooling fluids may be used to cooling the leading edge of the vane and passed through the purge air discharge orifices to purge the rim cavity proximate to the endwall. The first turn manifold may also include a plurality of trip strips. The trips strips may be positioned on the suction and pressure sidewalls and may be offset from trip strips on the opposing sidewall. The cooling system may also include an aft purge rim orifice.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Inventors: George Liang, Zhihong Gao
  • Publication number: 20090242819
    Abstract: An adjustable water valve of time-controlled type consists of an inner shell and a time-controlled apparatus. The time-controlled apparatus is disposed inside the inner shell and includes an elastomer and a push rod. The elastomer is disposed between a support lid and the push rod. When the push rod is pushed into the inner shell, the water valve is opened, so the user can wash with the water ejected. After certain time, the water pressures are balanced and the elastomer which has been compressed will push the push rod back to its initial position to close the valve.
    Type: Application
    Filed: September 11, 2006
    Publication date: October 1, 2009
    Applicant: HIGHPLUS INTERNATIONAL CO., LTD.
    Inventors: Youyue Gao, Zhihong Gao