Patents by Inventor Zhijun HUO

Zhijun HUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11152230
    Abstract: An apparatus and method for bonding alignment are provided. The apparatus for bonding alignment includes a press assembly and an objective lens group (105) disposed on one side of the press assembly. The press assembly includes a first chuck (103) and a rotatable second chuck (104). When support surfaces of the first and second chucks are not parallel to each other, the second chuck is rotated to make the two support surfaces parallel. A first substrate (301) is then loaded on the first chuck, and alignment marks (302) on the first substrate are observed using the objective lens group disposed on one side of the press assembly. A second substrate (501) is loaded on the second chuck, and alignment marks (502) on the second substrate are also observed with the objective lens group. Based on an observation result by the objective lens group, the two substrates are moved so that the alignment marks thereon are aligned and hence the two substrates themselves are aligned.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: October 19, 2021
    Assignee: SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    Inventors: Zhi Zhu, Jianjun Zhao, Zhijun Huo
  • Patent number: 10985044
    Abstract: A machine vision system for substrate alignment includes first and second illumination sources (11, 12), first and second reflectors (21, 22), first and second objective lenses (31, 32) and first and second detectors (41, 42), each of which pair is symmetric with respect to an X-axis. Light beams emitted from the first and second illumination sources are irradiated on and reflected by respective substrates (1, 2), amplified by the respective objective lenses and received and detected by the respective detectors. An alignment apparatus is also disclosed. Disposing each of the pair of the first and second illumination sources, the first and second reflectors, the first and second objective lenses and the first and second detectors in symmetry with respect to the X-axis results in a significantly reduced footprint of the machine vision system along the orientation of lens barrels of the objective lenses and hence an expanded detection range thereof and improved alignment efficiency and accuracy.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: April 20, 2021
    Assignee: Shanghai Micro Electronics Equipment (Group) Co., Ltd.
    Inventors: Zhi Zhu, Zhijun Huo
  • Publication number: 20200168459
    Abstract: A vacuumizing device and vacuumizing methods for providing a vacuum environment for bonding of substrate. The vacuumizing device includes a vacuum chamber, a bonding fixture and a vacuumizing system. The bonding fixture is disposed in the vacuum chamber and includes a substrate table provided with a plurality of grooves for retention of the substrate by suction. The vacuumizing system is disposed in communication with both the vacuum chamber and grooves. During vacuumizing by the vacuumizing system, a vacuum value in the grooves is smaller than or equal to a vacuum value in the vacuum chamber. In the device and methods, the vacuumizing system is used to vacuumize the grooves in the substrate table and the vacuum chamber so that the vacuum value in the grooves is always smaller than or equal to that in the vacuum chamber. As a result, the substrates are firmly retained on the substrate table without warping, thereby improving the quality of substrate bonding.
    Type: Application
    Filed: June 19, 2018
    Publication date: May 28, 2020
    Inventors: Yuangen YU, Zhijun HUO, Bin ZHAO, Hui FU, Xingxing WANG
  • Publication number: 20200090962
    Abstract: An apparatus and method for bonding alignment are provided. The apparatus for bonding alignment includes a press assembly and an objective lens group (105) disposed on one side of the press assembly. The press assembly includes a first chuck (103) and a rotatable second chuck (104). When support surfaces of the first and second chucks are not parallel to each other, the second chuck is rotated to make the two support surfaces parallel. A first substrate (301) is then loaded on the first chuck, and alignment marks (302) on the first substrate are observed using the objective lens group disposed on one side of the press assembly. A second substrate (501) is loaded on the second chuck, and alignment marks (502) on the second substrate are also observed with the objective lens group. Based on an observation result by the objective lens group, the two substrates are moved so that the alignment marks thereon are aligned and hence the two substrates themselves are aligned.
    Type: Application
    Filed: July 27, 2017
    Publication date: March 19, 2020
    Inventors: Zhi ZHU, Jianjun ZHAO, Zhijun HUO
  • Publication number: 20200090971
    Abstract: A machine vision system for substrate alignment includes first and second illumination sources (11, 12), first and second reflectors (21, 22), first and second objective lenses (31, 32) and first and second detectors (41, 42), each of which pair is symmetric with respect to an X-axis. Light beams emitted from the first and second illumination sources are irradiated on and reflected by respective substrates (1, 2), amplified by the respective objective lenses and received and detected by the respective detectors. An alignment apparatus is also disclosed. Disposing each of the pair of the first and second illumination sources, the first and second reflectors, the first and second objective lenses and the first and second detectors in symmetry with respect to the X-axis results in a significantly reduced footprint of the machine vision system along the orientation of lens barrels of the objective lenses and hence an expanded detection range thereof and improved alignment efficiency and accuracy.
    Type: Application
    Filed: July 27, 2017
    Publication date: March 19, 2020
    Inventors: Zhi ZHU, Zhijun HUO