Patents by Inventor Zhiqiao Wu

Zhiqiao Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230324073
    Abstract: A heating, ventilation, and/or air conditioning (HVAC) system includes an electrical enclosure having a compressor variable speed drive (VSD) and a condenser fan VSD disposed within the electrical enclosure. The compressor VSD is configured to control operation of a compressor motor of the HVAC system, and the condenser fan VSD is configured to control operation of a condenser fan motor of the HVAC system.
    Type: Application
    Filed: August 31, 2021
    Publication date: October 12, 2023
    Inventors: Scott Victor Slothower, Michael Scott Todd, Ajit Wasant Kane, Kanishk Dubey, Zhiqiao Wu, Jonathan Eugene Kunkle, Karl Richard Barley
  • Patent number: 10797612
    Abstract: A power distribution system includes a first set of power converters arranged with a respective set of power inputs, and having a respective set of power outputs, and at least one controller module communicatively connected with the first set of power converters and configured to controllably adjust the power conversion of the first set of power converters, and method of operating the power distribution system.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: October 6, 2020
    Assignee: GE Aviation Systems LLC
    Inventors: Hao Huang, Zhiqiao Wu
  • Patent number: 10707800
    Abstract: A multi-pulse transformer with multiple taps provides a constant magnitude voltage output to a variable speed chiller's compressor motor over a range of input voltages. The 3-phase transformer includes primary windings and a plurality of secondary windings. The secondary windings are electromagnetically coupled with the associated primary winding. The primary windings include taps for receiving multiple input AC voltages and the secondary windings have a single output terminal for supplying a predetermined output voltage which, after rectification produces a DC multi-pulse waveform for powering a DC link of a variable speed drive. Alternatively the 3-phase transformer includes multiple taps on the secondary windings. Each of the primary windings has a terminal for receiving an input AC voltage. The taps of the secondary windings provide an output voltage that is converted to a multi-pulse waveform for powering a DC link of a variable speed drive.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: July 7, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, John C. Hansen
  • Publication number: 20190044451
    Abstract: A power distribution system includes a first set of power converters arranged with a respective set of power inputs, and having a respective set of power outputs, and at least one controller module communicatively connected with the first set of power converters and configured to controllably adjust the power conversion of the first set of power converters, and method of operating the power distribution system.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 7, 2019
    Inventors: Hao Huang, Zhiqiao Wu
  • Publication number: 20190006976
    Abstract: A multi-pulse transformer with multiple taps provides a constant magnitude voltage output to a variable speed chiller's compressor motor over a range of input voltages. The 3-phase transformer includes primary windings and a plurality of secondary windings. The secondary windings are electromagnetically coupled with the associated primary winding. The primary windings include taps for receiving multiple input AC voltages and the secondary windings have a single output terminal for supplying a predetermined output voltage which, after rectification produces a DC multi-pulse waveform for powering a DC link of a variable speed drive. Alternatively the 3-phase transformer includes multiple taps on the secondary windings. Each of the primary windings has a terminal for receiving an input AC voltage. The taps of the secondary windings provide an output voltage that is converted to a multi-pulse waveform for powering a DC link of a variable speed drive.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 3, 2019
    Inventors: Zhiqiao Wu, John C. Hansen
  • Patent number: 10075117
    Abstract: A multi-pulse transformer with multiple taps provides a constant magnitude voltage output to a variable speed chiller's compressor motor over a range of input voltages. The 3-phase transformer includes primary windings and a plurality of secondary windings. The secondary windings are electromagnetically coupled with the associated primary winding. The primary windings include taps for receiving multiple input AC voltages and the secondary windings have a single output terminal for supplying a predetermined output voltage which, after rectification produces a DC multi-pulse waveform for powering a DC link of a variable speed drive. Alternatively the 3-phase transformer includes multiple taps on the secondary windings. Each of the primary windings has a terminal for receiving an input AC voltage. The taps of the secondary windings provide an output voltage that is converted to a multi-pulse waveform for powering a DC link of a variable speed drive.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: September 11, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, John C. Hansen
  • Patent number: 9979332
    Abstract: A chiller system includes a compressor configured to circulate a refrigerant between an evaporator and a condenser in a closed refrigerant loop and a synchronous motor configured to drive the compressor. The motor includes a stator winding and a rotor. The chiller system includes a controller configured to estimate a flux linkage of the rotor and generate a control signal for the motor based on the estimated flux linkage. Estimating the flux linkage includes applying a voltage of the stator winding to a transfer function having an error correction variable, using a first value of the error correction variable in the transfer function to obtain convergence of the flux linkage over an initial motor starting interval, and using a second value of the error correction variable after the initial motor starting interval to reduce an error in estimating the flux linkage.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 22, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Patent number: 9941825
    Abstract: A chiller system includes a compressor configured to circulate a refrigerant between an evaporator and a condenser in a closed refrigerant loop and a synchronous motor configured to drive the compressor. The motor includes a stator winding and a rotor. The chiller system includes a controller configured to estimate a flux linkage of the rotor and generate a control signal for the motor based on the estimated flux linkage. Estimating the flux linkage includes applying a voltage of the stator winding to a transfer function having an error correction variable, using a first value of the error correction variable in the transfer function to obtain convergence of the flux linkage over an initial motor starting interval, and using a second value of the error correction variable after the initial motor starting interval to reduce an error in estimating the flux linkage.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: April 10, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Patent number: 9923497
    Abstract: A chiller system includes a compressor configured to circulate a refrigerant between an evaporator and a condenser in a closed refrigerant loop and a synchronous motor configured to drive the compressor. The motor includes a stator winding and a rotor. The chiller system includes a controller configured to estimate a flux linkage of the rotor and generate a control signal for the motor based on the estimated flux linkage. Estimating the flux linkage includes applying a voltage of the stator winding to a transfer function having an error correction variable, using a first value of the error correction variable in the transfer function to obtain convergence of the flux linkage over an initial motor starting interval, and using a second value of the error correction variable after the initial motor starting interval to reduce an error in estimating the flux linkage.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 20, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Patent number: 9590540
    Abstract: A system or method controlling a variable speed drive based on PWM techniques, wherein a first PWM method is used when the input current is less than a predetermined threshold value, for higher efficiency and lower total harmonic distortion (THD); and a second PWM method comprising a discontinuous modulation signal is used when the input current is greater than the predetermined threshold value for higher efficiency. By doing so, the maximum efficiency of VSD within the whole operation range can be achieved.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: March 7, 2017
    Assignee: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ajit W. Kane, Shreesha Adiga-Manoor
  • Patent number: 9490733
    Abstract: A method is disclosed for controlling a synchronous motor by determining a rotor position of the synchronous motor based on estimating a flux linkage. The method includes applying a voltage of a stator winding of the motor to a transfer function. The transfer function includes an S-domain integration operation and an error correction variable. An output of the transfer function is processed to compensate for the error correction variable introduced in the transfer function. An estimated flux linkage is generated and an angle of the rotor position is computed based on the flux linkage. The computed rotor position is input to a controller for controlling a position or speed of the motor.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 8, 2016
    Assignee: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Publication number: 20160248363
    Abstract: A multi-pulse transformer with multiple taps provides a constant magnitude voltage output to a variable speed chiller's compressor motor over a range of input voltages. The 3-phase transformer includes primary windings and a plurality of secondary windings. The secondary windings are electromagnetically coupled with the associated primary winding. The primary windings include taps for receiving multiple input AC voltages and the secondary windings have a single output terminal for supplying a predetermined output voltage which, after rectification produces a DC multi-pulse waveform for powering a DC link of a variable speed drive. Alternatively the 3-phase transformer includes multiple taps on the secondary windings. Each of the primary windings has a terminal for receiving an input AC voltage. The taps of the secondary windings provide an output voltage that is converted to a multi-pulse waveform for powering a DC link of a variable speed drive.
    Type: Application
    Filed: January 21, 2015
    Publication date: August 25, 2016
    Applicant: JOHNSON CONTROLS TECHNOLOGY COMPANY
    Inventors: Zhiqiao WU, John C. HANSEN
  • Publication number: 20160218653
    Abstract: A chiller system includes a compressor configured to circulate a refrigerant between an evaporator and a condenser in a closed refrigerant loop and a synchronous motor configured to drive the compressor. The motor includes a stator winding and a rotor. The chiller system includes a controller configured to estimate a flux linkage of the rotor and generate a control signal for the motor based on the estimated flux linkage. Estimating the flux linkage includes applying a voltage of the stator winding to a transfer function having an error correction variable, using a first value of the error correction variable in the transfer function to obtain convergence of the flux linkage over an initial motor starting interval, and using a second value of the error correction variable after the initial motor starting interval to reduce an error in estimating the flux linkage.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 28, 2016
    Applicant: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Publication number: 20160218651
    Abstract: A chiller system includes a compressor configured to circulate a refrigerant between an evaporator and a condenser in a closed refrigerant loop and a synchronous motor configured to drive the compressor. The motor includes a stator winding and a rotor. The chiller system includes a controller configured to estimate a flux linkage of the rotor and generate a control signal for the motor based on the estimated flux linkage. Estimating the flux linkage includes applying a voltage of the stator winding to a transfer function having an error correction variable, using a first value of the error correction variable in the transfer function to obtain convergence of the flux linkage over an initial motor starting interval, and using a second value of the error correction variable after the initial motor starting interval to reduce an error in estimating the flux linkage.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 28, 2016
    Applicant: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Publication number: 20160218654
    Abstract: A chiller system includes a compressor configured to circulate a refrigerant between an evaporator and a condenser in a closed refrigerant loop and a synchronous motor configured to drive the compressor. The motor includes a stator winding and a rotor. The chiller system includes a controller configured to estimate a flux linkage of the rotor and generate a control signal for the motor based on the estimated flux linkage. Estimating the flux linkage includes applying a voltage of the stator winding to a transfer function having an error correction variable, using a first value of the error correction variable in the transfer function to obtain convergence of the flux linkage over an initial motor starting interval, and using a second value of the error correction variable after the initial motor starting interval to reduce an error in estimating the flux linkage.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 28, 2016
    Applicant: Johnson Controls Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Publication number: 20150318803
    Abstract: A system or method controlling a variable speed drive based on PWM techniques, wherein a first PWM method is used when the input current is less than a predetermined threshold value, for higher efficiency and lower total harmonic distortion (THD); and a second PWM method comprising a discontinuous modulation signal is used when the input current is greater than the predetermined threshold value for higher efficiency. By doing so, the maximum efficiency of VSD within the whole operation range can be achieved.
    Type: Application
    Filed: January 28, 2014
    Publication date: November 5, 2015
    Applicant: JOHNSON CONTROLS TECHNOLOGY COMPANY
    Inventors: Zhiqiao WU, Ajit W. KANE, Shreesha ADIGA-MANOOR
  • Publication number: 20130141024
    Abstract: A method is disclosed for controlling a synchronous motor by determining a rotor position of the synchronous motor based on estimating a flux linkage. The method includes applying a voltage of a stator winding of the motor to a transfer function. The transfer function includes an S-domain integration operation and an error correction variable. An output of the transfer function is processed to compensate for the error correction variable introduced in the transfer function. An estimated flux linkage is generated and an angle of the rotor position is computed based on the flux linkage. The computed rotor position is input to a controller for controlling a position or speed of the motor.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 6, 2013
    Applicant: JOHNSON CONTROLS TECHNOLOGY COMPANY
    Inventors: Zhiqiao Wu, Ivan Jadric
  • Patent number: 8353174
    Abstract: A chiller system is provided with a compressor, a condenser, and an evaporator connected in a closed refrigerant loop. A motor is connected to the compressor to power the compressor. A variable speed drive is connected to the motor. The variable speed drive is arranged to receive an input AC power at a fixed input AC voltage and a fixed input frequency and provide an output power at a variable voltage and variable frequency to the motor. The variable voltage has a maximum voltage greater in magnitude than the fixed input AC voltage and the variable frequency has a maximum frequency greater than the fixed input frequency. The variable speed drive includes a converter connected to an AC power source providing the input AC voltage, the converter is arranged to convert the input AC voltage to a DC voltage. A DC link is connected to the converter. The DC link is arranged to filter and store the DC voltage from the converter. An inverter is connected to the DC link.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: January 15, 2013
    Assignee: Johnson Controls Technology Company
    Inventors: Ivan Jadric, Zhiqiao Wu, Michael S. Todd, Justin Drew Warner, Shreesha Adiga Manoor, Konstantin Borisov, Scott Victor Slothower, Kanishk Dubey, John C. Hansen
  • Patent number: 8336323
    Abstract: A drive system for a compressor of a chiller system includes a variable speed drive. The variable speed drive receives an input AC power at a fixed input AC voltage and a fixed input frequency, and provides an output AC power at a variable voltage and variable frequency. The variable speed drive includes a converter connected to an AC power source. The converter is arranged to convert the input AC voltage to a DC voltage. A DC link is connected to the converter and configured to filter and store the DC voltage from the converter. An inverter is connected to the DC link. A motor is connectable to the compressor for powering the compressor. A controller is arranged to control switching in the converter and the inverter. The controller is arranged to apply randomized pulse width modulation to vary the switching frequency of transistors in the converter and the inverter at each switching cycle. The motor may be a permanent magnet synchronous motor.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: December 25, 2012
    Assignee: Johnson Controls Technology Company
    Inventors: Konstantin Borisov, Zhiqiao Wu, Michael S. Todd, Justin Drew Warner, Shreesha Adiga Manoor, Ivan Jadric, Scott Victor Slothower, Kanishk Dubey, John C. Hansen
  • Patent number: 8286439
    Abstract: A drive system for a compressor of a chiller system includes a variable speed drive. The variable speed drive is arranged to receive an input AC power at a fixed AC input voltage and fixed input frequency and provide an output AC power at a variable voltage and variable frequency. The variable speed drive includes a converter connected to an AC power source providing the input AC voltage. The converter is arranged to convert the input AC voltage to a DC voltage. A DC link is connected to the converter. The DC link is arranged to filter and store the DC voltage from the converter. A first inverter and a second inverter are each connected to the DC link. A motor includes stator windings connected between the first inverter and the second inverter to power the motor by the output AC power from the first inverter and the second inverter. The motor is connectable to a compressor of the chiller system to power the compressor. The motor may be a permanent magnet synchronous motor.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: October 16, 2012
    Assignee: Johnson Control Technology Company
    Inventors: Zhiqiao Wu, Ivan Jadric, Michael S. Todd, Justin Drew Warner, Shreesha Adiga Manoor, Konstantin Borisov, Scott Victor Slothower, Kanishk Dubey, John C. Hansen