Patents by Inventor Zhixing Lin

Zhixing Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240398717
    Abstract: A method of employing a mixture of two different types of silica as a binary dry coating material to benefit properties of fine milled pharmaceuticals, such as ibuprofen, milled to the mean particle size of ˜10 ?m or smaller. Synergistic effects of reduction in agglomerate size, and improved surface wettability was found by employing a mixture of two different types of silica as the dry coating material in specific ratios. The silica used up to weight percent to 2.31 wt % of a minority component, typically an API or excipient. The silica amount in the entire blend was less than 0.1 wt %. The surface coverage of API was optimized to 50%. Properties were increased when surface coverage by binary coating agents was controlled so that no excess coating agent was available to form agglomerates on the surface.
    Type: Application
    Filed: July 30, 2024
    Publication date: December 5, 2024
    Applicant: New Jersey Institute of Technology
    Inventors: Rajesh N. Dave, Sangah Selene Kim, Zhixing Lin
  • Patent number: 12076440
    Abstract: High (greater than 30%) and/or low (less than 10%) loaded multiple API powdered/nanoparticle were tabulated with increased flowability and physical properties. Properties include blend flowability and uniformity, bulk packing density, compactability, tensile strength, and dissolution. Blending is done through solventless dry mechanical coating of at least one minority API component defined as the API component with the least weight per volume surface coated with nano-sized powders in lesser amounts by wt % of the blend, and preferably less than 10% dry coated of the minority API. An excipient may be dry coated in the lesser amount wherein the excipient is a minority component. Both minority excipient and minority API may be dry coated. Using dry coating instead of dry granulation and/or wet granulation techniques in producing tablets saves manufacturing steps, costs, and produces higher quality tablets with surprisingly higher properties than expected for low flowability solid powdered ingredients.
    Type: Grant
    Filed: July 12, 2023
    Date of Patent: September 3, 2024
    Assignee: New Jersey Institute of Technology
    Inventors: Rajesh N. Dave, Sangah Kim, Zhixing Lin
  • Publication number: 20240024241
    Abstract: High(greater than 30%) and/or low(less than 10%) loaded multiple API powdered/nanoparticle were tabulated with increased flowability and physical properties. Properties include blend flowability and uniformity, bulk packing density, compactability, tensile strength, and dissolution. Blending is done through solventless dry mechanical coating of at least one minority API component defined as the API component with the least weight per volume surface coated with nano-sized powders in lesser amounts by wt % of the blend, and preferably less than 10% dry coated of the minority API. An excipient may be dry coated in the lesser amount wherein the excipient is a minority component. Both minority excipient and minority API may be dry coated. Using dry coating instead of dry granulation and/or wet granulation techniques in producing tablets saves manufacturing steps, costs, and produces higher quality tablets with surprisingly higher properties than expected for low flowability solid powdered ingredients.
    Type: Application
    Filed: July 12, 2023
    Publication date: January 25, 2024
    Applicant: New Jersey Institute of Technology
    Inventors: Rajesh N. Dave, Sangah Kim, Zhixing Lin