Patents by Inventor Zhiyong Xia

Zhiyong Xia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932970
    Abstract: A nanofiber comprising a polyamide including at least one substituted phenyl group is provided. The nanofiber includes an average diameter from about 50 to about 1000 nm. A fibrous mat including a plurality of the nanofibers is also provided. A composite including a plurality of the nanofibers and a continuous matrix resin is also provided. A method of forming the nanofibers is also provided.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: March 19, 2024
    Inventors: Christopher M. Hoffman, Jr., Matthew P. Yeager, Morgana M. Trexler, Zhiyong Xia, Douglas A. Smith, Marcia W. Patchan
  • Patent number: 11918977
    Abstract: Contaminate-sequestering coatings including a network of hydrolyzed silane compounds including a plurality of thiol functional groups, a plurality of fluorinated functionalities, or both are provided. The contaminate-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species or any combination thereof. Methods of functionalizing a substrate surface with contaminate-sequestering functionalities that sequester one or more PFAS, heavy metals, or both are also provided. Methods of removing contaminants from contaminate-containing liquids, and devices including the contaminate-sequestering coatings are also provided.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: March 5, 2024
    Assignee: The Johns Hopkins University
    Inventors: Christopher M. Hoffman, Jr., Zhiyong Xia, James K. Johnson
  • Publication number: 20230151031
    Abstract: The present disclosure relates to modified metal-organic frameworks (MOFs) and a post-synthetic modification method that simultaneously enhances hydrophilicity and water stability to achieve high-performance water sorption materials.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 18, 2023
    Inventors: Tianyi Luo, Michael Tsapatsis, Zhiyong Xia
  • Patent number: 11638899
    Abstract: A water harvesting device includes at least a first adsorption column including a first inlet, a first outlet, and a first interior region. A sorbent material is located within the first interior region of the first adsorption column. The sorbent material includes a metal organic framework (MOF) material including a plurality of metal ions or clusters of metal ions coordinated to one or more organic linkers, a plurality of nanofabrics comprising a hydrogel material, or a combination thereof.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: May 2, 2023
    Assignee: The Johns Hopkins University
    Inventors: Zhiyong Xia, Matthew W. Logan, Spencer A. Langevin, Scott A. Shuler
  • Publication number: 20230027521
    Abstract: Contaminant-sequestering coatings include a network of hydrolyzed silane compounds including (i) a plurality of fluorinated functionalities, and (ii) a plurality of thiol functional groups are provided. The network of hydrolyzed silane compounds includes a fluorinated silane including (a) a hydrophilic polar head region. The polar head region includes one or multiple units of ethylene glycol (EG) functionality, (b) a fluorine-containing region, and (c) an anchor region including a silicon atom. The contaminant-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species, or any combination thereof.
    Type: Application
    Filed: August 22, 2022
    Publication date: January 26, 2023
    Inventors: Christopher M. Hoffman, JR., Zhiyong Xia, James K. Johnson
  • Publication number: 20230001381
    Abstract: Sorbent materials comprising a nanofiber composite including a polymeric material defining a continuous phase and at least one metal organic framework (MOF) material defining a discontinuous phase are provided. The at least one MOF material is dispersed throughout the continuous phase of the polymeric material. Fibrous mats comprising the sorbent materials are also provided. Water harvesting devices utilizing the sorbent materials are also provided.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Inventors: Zhiyong Xia, Matthew W. Logan, Spencer A. Langevin
  • Publication number: 20230001378
    Abstract: Contaminate-sequestering coatings including a network of hydrolyzed silane compounds including a plurality of thiol functional groups, a plurality of fluorinated functionalities, or both are provided. The contaminate-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species or any combination thereof. Methods of functionalizing a substrate surface with contaminate-sequestering functionalities that sequester one or more PFAS, heavy metals, or both are also provided. Methods of removing contaminants from contaminate-containing liquids, and devices including the contaminate-sequestering coatings are also provided.
    Type: Application
    Filed: August 22, 2022
    Publication date: January 5, 2023
    Inventors: Christopher M. Hoffman, Jr., Zhiyong Xia, James K. Johnson
  • Publication number: 20230001251
    Abstract: A contaminant-sequestering coating includes a network of hydrolyzed silane compounds. The hydrolyzed silane compounds include a hydrophilic polar head region, a hydrophobic linker, and an anchor region including a silicon atom. The network of hydrolyzed silane compounds is devoid or substantially devoid of fluorine atoms. Methods of destroying one or more perfluoroalkyl and/or polyfluoroalkyl (PFAS) compounds present in a contaminant-containing liquid are also provided.
    Type: Application
    Filed: June 15, 2022
    Publication date: January 5, 2023
    Inventors: Zhiyong Xia, James K. Johnson, Jesse S. Ko, Nam Q. Le, Danielle R. Schlesinger, Dajie Zhang, Plamen A. Demirev
  • Publication number: 20220404305
    Abstract: A sensor for measuring ocean water salinity is described. The sensor may include a measurement clock circuit, a control clock circuit, and a comparator circuit. The measurement clock circuit, having an output that varies with salinity of a fluid, may have a first circuit architecture that includes a capacitive gap assembly that permits a fluid to flow into a gap between two electrodes of the capacitive gap assembly. The control clock circuit, having an output that does not vary with salinity of the fluid, may have a second circuit architecture comprising a capacitor. The comparator circuit may be configured to compare the controlled clock output to the measured clock output over a duration of time to determine a salinity measurement of the fluid.
    Type: Application
    Filed: February 15, 2022
    Publication date: December 22, 2022
    Inventors: Nicholas R. Kantack, Jennifer S. Benzing, Tessa B. VanVolkenburg, Zhiyong Xia, Spencer A. Langevin, Daniel S. Ayoub
  • Patent number: 11452987
    Abstract: Contaminate-sequestering coatings including a network of hydrolyzed silane compounds including a plurality of thiol functional groups, a plurality of fluorinated functionalities, or both are provided. The contaminate-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species or any combination thereof. Methods of functionalizing a substrate surface with contaminate-sequestering functionalities that sequester one or more PFAS, heavy metals, or both are also provided. Methods of removing contaminants from contaminate-containing liquids, and devices including the contaminate-sequestering coatings are also provided.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 27, 2022
    Assignee: The Johns Hopkins University
    Inventors: Christopher M. Hoffman, Jr., Zhiyong Xia, James K. Johnson
  • Publication number: 20210299607
    Abstract: A water harvesting device includes at least a first adsorption column including a first inlet, a first outlet, and a first interior region. A sorbent material is located within the first interior region of the first adsorption column. The sorbent material includes a metal organic framework (MOF) material including a plurality of metal ions or clusters of metal ions coordinated to one or more organic linkers, a plurality of nanofabrics comprising a hydrogel material, or a combination thereof.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 30, 2021
    Inventors: Zhiyong Xia, Matthew W. Logan, Spencer A. Langevin, Scott A. Shuler
  • Patent number: 11125633
    Abstract: Strain sensing compositions including a polymeric matrix material and a mechanophore component distributed throughout the polymeric material and covalently bonded to the polymeric material are provided. The mechanophore component undergoes a visible color change and the strain sensing composition exhibits a continuous three-dimensional (3D) spatial strain distribution including at least one color gradient upon direct or indirect impact by an object. Methods of forming strain sensing compositions are also provided. Methods of evaluating a strain distribution associated with an impact of a surrogate material comprising a mechanophore component are also provided.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: September 21, 2021
    Assignee: The Johns Hopkins University
    Inventors: Zhiyong Xia, Vanessa D. Alphonse, Evan P. Lloyd
  • Patent number: 11015069
    Abstract: A surface treatment formulation configured to inhibit scaling or climbing of a surface is provided. The surface treatment formulation may include a base binding material configured to adhere to the surface and a filler material embedded in the base binding material. The filler material may include a dry lubricant having a layered lamellar structure or low inter filler interaction. Furthermore, the surface treatment formulation may be configured to be activated in order to expose the filler material thereby causing formation of a slippery surface to inhibit the scaling or climbing of the surface.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: May 25, 2021
    Assignee: The Johns Hopkins University
    Inventors: Zhiyong Xia, Adam J. Maisano, Lance M. Baird, Adam W. Freeman, Sara E. Kubik, Dawnielle Farrar-Gaines
  • Patent number: 10987501
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: April 27, 2021
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss
  • Patent number: 10913021
    Abstract: A water purification device includes a heavy metal removal layer configured to remove heavy metal ions and perfluorinated compounds from contaminated water. The water purification device may further include a biological species removal layer configured to remove biological species from the contaminated water and a support layer configured to provide support for the water purification device.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: February 9, 2021
    Assignee: The Johns Hopkins University
    Inventors: Zhiyong Xia, Brad M. Ward
  • Publication number: 20200398249
    Abstract: Contaminate-sequestering coatings including a network of hydrolyzed silane compounds including a plurality of thiol functional groups, a plurality of fluorinated functionalities, or both are provided. The contaminate-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species or any combination thereof. Methods of functionalizing a substrate surface with contaminate-sequestering functionalities that sequester one or more PFAS, heavy metals, or both are also provided. Methods of removing contaminants from contaminate-containing liquids, and devices including the contaminate-sequestering coatings are also provided.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Inventors: Christopher M. Hoffman, JR., Zhiyong Xia, James K. Johnson
  • Patent number: 10801131
    Abstract: Example methods and articles of manufacture related to electrospun aramid nanofibers are provided. One example method may include forming a resultant solution by reacting a solution of aramids dissolved in a solvent with an electrophile. In this regard, the electrophile may perform a side chain substitution on the dissolved aramids. The example method may further include electrospinning the resultant solution to form an aramid nanofiber.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 13, 2020
    Assignee: The Johns Hopkins University
    Inventors: Matthew P. Yeager, Christopher M. Hoffman, Jr., Morgana M. Trexler, Zhiyong Xia
  • Publication number: 20200224335
    Abstract: A nanofiber comprising a polyamide including at least one substituted phenyl group is provided. The nanofiber includes an average diameter from about 50 to about 1000 nm. A fibrous mat including a plurality of the nanofibers is also provided. A composite including a plurality of the nanofibers and a continuous matrix resin is also provided. A method of forming the nanofibers is also provided.
    Type: Application
    Filed: August 28, 2019
    Publication date: July 16, 2020
    Inventors: Christopher M. Hoffman, JR., Matthew P. Yeager, Morgana M. Trexler, Zhiyong Xia, Douglas A. Smith, Marcia W. Patchan
  • Publication number: 20200191668
    Abstract: Strain sensing compositions including a polymeric matrix material and a mechanophore component distributed throughout the polymeric material and covalently bonded to the polymeric material are provided. The mechanophore component undergoes a visible color change and the strain sensing composition exhibits a continuous three-dimensional (3D) spatial strain distribution including at least one color gradient upon direct or indirect impact by an object. Methods of forming strain sensing compositions are also provided. Methods of evaluating a strain distribution associated with an impact of a surrogate material comprising a mechanophore component are also provided.
    Type: Application
    Filed: August 6, 2019
    Publication date: June 18, 2020
    Inventors: Zhiyong Xia, Vanessa D. Alphonse, Evan P. Lloyd
  • Publication number: 20200147358
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 14, 2020
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss